

Evolving Connectionist Systems

Nikola Kasabov

Evolving
Connectionist
Systems
The Knowledge Engineering Approach

Second edition

Professor Nikola Kasabov, PhD, FRSNZ
Director and Chief Scientist
Knowledge Engineering and Discovery Research Institute
Auckland University of Technology
Auckland, New Zealand

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2006940182

ISBN 978-1-84628-345-1 e-ISBN 978-1-84628-347-5

Printed on acid-free paper

© Springer-Verlag London Limited 2007

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only by reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the
publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued
by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be
sent to the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of
a specific statement, that such names are exempt from the relevant laws and regulations and therefore
free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the infor-
mation contained in this book and cannot accept and legal responsibility or liability for any errors or
omissions that may be made.

9 8 7 6 5 4 3 2 1

Springer Science+Business Media
springer.com

To my daughters Assia and Kapka,
for all their love, understanding, and support throughout my

academic career.

Foreword I

This second edition provides fully integrated, up-to-date support for knowledge-
based computing in a broad range of applications by students and professionals.
Part I retains well-organized introductory chapters on modeling dynamics in
evolving connectionist systems adapted through supervised, unsupervised, and
reinforcement learning; it includes chapters on spiking neural networks, neuro-
fuzzy inference systems, and evolutionary computation. Part II develops promising
new and expanded applications in gene regulation, DNA-protein interactions,
adaptive speech recognition, multimodal signal processing, and adaptive robotics.
Emphasis is placed on multilayered adaptive systems in which the rules that
govern parameter optimization are themselves subject to evolutionary pressures
and modification in accord with strategic reformulation of pathways to problem
solving. The human brain is treated both as a source of new concepts to be
incorporated into knowledge engineering and as a prime target for application
of novel techniques for analyzing and modeling brain data. Brains are material
systems that operate simultaneously at all levels of scientific study, from quantum
fields through cellular networks and neural populations to the dynamics of social,
economic, and ecological systems. All these levels find place and orientation in this
succinct presentation of universal tools, backed by an extended glossary, selected
appendices, and indices referenced to Internet resources.

Professor Walter J. Freeman
University of California at Berkeley

vii

Foreword II

This book is an important update on the first edition, taking account of exciting
new developments in adaptive evolving systems. Evolving processes, through both
individual development and population/generation evolution, inexorably led the
human race to our supreme intelligence and our superior position in the animal
kingdom. Nikola Kasabov has captured the essence of this powerful natural tool
by adding various forms of adaptivity implemented by neural networks. The new
edition of the book brings the treatment of the first edition to the cutting edge of
modern research. At the same time Kasabov has kept the treatment to the two-
part format of generic level and applications, with demonstrations showing how
important problems can be handled by his techniques such as in gene and protein
interactions and in brain imaging and modelling, as well as in other exciting areas.
In all, this new edition is a very important book, and Nik should be congratulated
on letting his enthusiasm shine through, but at the same time keeping his expertise
as the ultimate guide. A must for all in the field!

Professor John G. Taylor
King’s College London

ix

Preface

This second edition of the book reflects on the new development in the area
of computational intelligence and especially the adaptive evolving systems. Even
though the structure of the book is preserved and lots of the material from the
first edition is also included here, there are new topics that make the new edition a
contemporary and an advanced reading in the field of computational intelligence.
In terms of generic methods, these are: spiking neural networks, transductive
neuro-fuzzy inference methods, personalised modelling, methods for integrating
data and models, quantum inspired neural networks, neuro-genetic models, and
others. In terms of applications, these are: gene-regulatory network modelling,
computational neuro-genetic modelling, adaptive robots, and modelling adaptive
socioeconomic and ecological systems.

The emphasis in the second edition is more on the following aspects.

1. Evolving intelligent systems: systems that apply evolving rules to evolve their
structure, functionality, and knowledge through incremental adaptive learning
and interaction, where the evolving rules may change as well

2. The knowledge discovery aspect of computational modelling across application
areas such as bioinformatics, brain study, engineering, environment, and social
sciences, i.e. the discovery of the evolving rules that drive the processes and the
resulting patterns in the collected data

3. The interaction between different levels of information processing in one
system, e.g. parameters (genes), internal clusters, and output data (behaviour)

4. Challenges for the future development in the field of computational intelli-
gence (e.g. personalised modelling, quantum inspired neuro-computing, gene
regulatory network discovery)

The book covers contemporary computational modelling and machine learning
techniques and their applications, where in the core of the models are artificial
neural networks and hybrid models (e.g. neuro-fuzzy) inspired by the evolving
nature of processes in the brain, in proteins and genes in a cell, and by some
quantum principles. The book also covers population-generation-based methods
for optimisation of model parameters and features (variables), but the emphasis
is on the learning and the development of the structure and the functionality of
an individual model. In this respect, the book has a much wider scope than some
earlier work on evolutionary (population-generation) based training of artificial
neural networks, also called there ‘evolving neural networks’.

xi

xii Preface

The second edition of the book includes new applications to gene and protein
interaction modelling, brain data analysis and brain model creation, computa-
tional neuro-genetic modelling, adaptive speech, image and multimodal recog-
nition, language modelling, adaptive robotics, and modelling dynamic financial,
socioeconomic, and ecological processes.

Overall, the book is more about problem solving and intelligent systems rather
than about mathematical proofs of theoretical models. Additional resources for
practical model creation, model validation, and problem solving, related to topics
presented in some parts of the book, are available from: http://www.kedri.info/
and http://www.theneucom.com.

Evolving Connectionist Systems is aimed at students and practitioners interested
in developing and using intelligent computational models and systems to solve
challenging real-world problems in computer science, engineering, bioinformatics,
and neuro-informatics. The book challenges scientists and practitioners with open
questions about future directions for information sciences inspired by nature.

The book argues for a further development of humanlike and human-oriented
information-processing methods and systems. In this context, ‘humanlike’ means
that some principles from the brain and genetics are used for the creation of new
computational methods, whereas ‘human-oriented’ means that these methods can
be used to discover and understand more about the functioning of the brain and
the genes, about speech and language, about image and vision, and about our
society and our environment.

It is likely that future progress in many important areas of science (e.g. bioinfor-
matics, brain science, information science, physics, communication engineering,
and social sciences) can be achieved only if the areas of artificial intelligence,
brain science, bioinformatics, and quantum physics share their methods and their
knowledge. This book offers some steps in this direction. This book introduces
and applies similar or identical fundamental information-processing methods to
different domain areas. In this respect the conception of this work was inspired
by the wonderful book by Douglas Hofstadter, Godel, Escher, Bach: An Eternal
Golden Braid (1979), and by the remarkable Handbook of Brain Science and Neural
Networks, edited by Michael Arbib (1995, 2002).

The book consists of two parts. The first part presents generic methods and
techniques. The second part presents specific techniques and applications in bioin-
formatics, neuro-informatics, speech and image recognition, robotics, finance,
economics, and ecology. The last chapter presents a new promising direction:
quantum inspired evolving intelligent systems.

Each chapter of the book stands on its own. In order to understand the details of
the methods and the applications, one may need to refer to some relevant entries
in the extended glossary, or to a textbook on neural networks, fuzzy systems, and
knowledge engineering (see, for example Kasabov (1996)). The glossary contains
brief descriptions and explanations of many of the basic notions of information
science, statistical analysis, artificial intelligence, biological neurons, brain organi-
zation, artificial neural networks, molecular biology, bioinformatics, evolutionary
computation, etc.

This work was partially supported by the research grant AUTX02001
‘Connectionist-based intelligent information systems’, funded by the New Zealand

Preface xiii

Foundation for Research, Science, and Technology and the New Economy Research
Fund, and also by the Auckland University of Technology.

I am grateful for the support and encouragement I received from the editorial
team of Springer-Verlag, London, especially from Professor John G. Taylor and
the assistant editor Helen Desmond.

There are a number of people whom I would like to thank for their participation
in some sections of the book. These are several colleagues, research associates,
and postgraduate students I have worked with at the Knowledge Engineering
and Discovery Research Institute in Auckland, New Zealand, in the period from
2002 till 2007: Dr. Qun Song, Mrs. Joyce D’Mello, Dr. Zeke S. Chan, Dr. Lubica
Benuskova, Dr. Paul S. Pang, Dr. Liang Goh, Dr. Mark Laws, Dr. Richard Kilgour,
Akbar Ghobakhlou, Simei Wysosky, Vishal Jain, Tian-Min Ma (Maggie), Dr. Mark
Marshall, Dougal Greer, Peter Hwang, David Zhang, Dr. Matthias Futschik, Dr.
Mike Watts, Nisha Mohan, Dr. Ilkka Havukkala, Dr. Sue Worner, Snjezana Soltic,
Dr. DaDeng, Dr. Brendon Woodford, Dr. John R. Taylor, Prof. R. Kozma. I would
like to thank again Mrs. Kirsty Richards who helped me with the first edition of the
book, as most of the figures from the first edition are included in this second one.

The second edition became possible due to the time I had during my sabbatical
leave in 2005/06 as a Guest Professor funded by the German DAAD (Deutscher
Akademisher Austausch Dienst) organisation for exchange of academics, and
hosted by Professor Andreas Koenig and his group at the TU Kaiserslautern.

I have presented parts of the book at conferences and I appreciate the
discussions I had with a number of colleagues. Among them are Walter Freeman
and Lotfi Zadeh, both from the University of California at Berkeley; Takeshi
Yamakawa, Kyushu Institute of Technology; John G. Taylor, Kings College,
London; Ceese van Leuwen and his team, RIKEN, Japan; Michael Arbib, University
of Southern California; Dimiter Dimitrov, National Cancer Institute in Frederick,
Maryland; Jaap van den Herik and Eric Postma, University of Maastricht; Wlodeck
Duch, Copernicus University; Germano Resconi, Catholic University in Brescia;
Alessandro Villa, University of Lausanne; UK; Peter Erdi, Budapest; Max Bremer,
University of Plymouth; Bill Howell, National Research Council of Canada;
Mario Fedrizzi, University of Trento in Italy; Plamen Angelov, the University of
Lancaster, UK, Dimitar Filev, FORD; Bogdan Gabrich, University of Bournemouth
Dr. G. Coghill, University of Auckland; Dr V. Brusic, Harvard; Prof. Jim Wright,
Auckland and many more.

I remember a comment by Walter Freeman, when I first presented the concept
of evolving connectionist systems (ECOS) at the Iizuka’98 conference in Japan:
‘Throw the “chemicals” and let the system grow, is that what you are talking
about, Nik?’ After the same presentation at Iizuka’98, Robert Hecht-Nielsen made
the following comment, ‘This is a powerful method! Why don’t you apply it to
challenging real world problems?’ Later on, in November, 2001, Walter Freeman
made another comment at the ICONIP conference in Shanghai: ‘Integrating genetic
level and neuronal level in brain modelling and intelligent machines is a very
important and a promising approach, but how to do that is the big question.’
Michael Arbib said in 2004 ‘If you include genetic information in your models,
you may need to include atomic information as well….’

Max Bremer commented after my talk in Cambridge, at the 25th anniversary of
the AI SIG of the BCS in December 2005: ‘A good keynote speech is the one that

xiv Preface

makes at least half of the audience abandon their previous research topics and
start researching on the problems and topics presented by the speaker.’

All those comments encouraged me and at the same time challenged me in
my research. I hope that some readers would follow on some of the techniques,
applications, and future directions presented in the book, and later develop their
own methods and systems, as the book offers many open questions and directions
for further research in the area of evolving intelligent systems (EIS).

Nikola Kasabov
23 May 2007

Auckland

Contents

Foreword I by Walter J. Freeman . vii

Foreword II by John G. Taylor . ix

Preface . xi

Abstract . xxi

Part I Evolving Connectionist Methods 1

Introduction . 3
I.1 Everything Is Evolving, but What Are the Evolving Rules? 3
I.2 Evolving Intelligent Systems (EIS) and Evolving Connectionist

Systems (ECOS) . 8
I.3 Biological Inspirations for EIS and ECOS 11
I.4 About the Book . 13
I.5 Further Reading . 13

1 Feature Selection, Model Creation, and Model Validation 15
1.1 Feature Selection and Feature Evaluation 15
1.2 Incremental Feature Selection . 20
1.3 Machine Learning Methods – A Classification Scheme. 21
1.4 Probability and Information Measure. Bayesian Classifiers,

Hidden Markov Models. Multiple Linear Regression 35
1.5 Support Vector Machines (SVM). 40
1.6 Inductive Versus Transductive Learning and Reasoning.

Global, Local, and ‘Personalised’ Modelling 44
1.7 Model Validation . 48
1.8 Exercise. 49
1.9 Summary and Open Problems . 49
1.10 Further Reading . 51

2 Evolving Connectionist Methods for Unsupervised Learning 53
2.1 Unsupervised Learning from Data. Distance Measure 53
2.2 Clustering . 57
2.3 Evolving Clustering Method (ECM) 61
2.4 Vector Quantisation. SOM and ESOM 68
2.5 Prototype Learning. ART . 73

xv

xvi Contents

2.6 Generic Applications of Unsupervised Learning Methods 75
2.7 Exercise. 81
2.8 Summary and Open Problems . 81
2.9 Further Reading . 82

3 Evolving Connectionist Methods for Supervised Learning 83
3.1 Connectionist Supervised Learning Methods 83
3.2 Simple Evolving Connectionist Methods 91
3.3 Evolving Fuzzy Neural Networks (EFuNN) 97
3.4 Knowledge Manipulation in Evolving Fuzzy Neural

Networks (EFuNNs) – Rule Insertion, Rule Extraction,
Rule Aggregation . 109

3.5 Exercise. 124
3.6 Summary and Open Questions . 125
3.7 Further Reading . 126

4 Brain Inspired Evolving Connectionist Models 127
4.1 State-Based ANN . 127
4.2 Reinforcement Learning . 132
4.3 Evolving Spiking Neural Networks. 133
4.4 Summary and Open Questions . 139
4.5 Further Reading . 140

5 Evolving Neuro-Fuzzy Inference Models 141
5.1 Knowledge-Based Neural Networks 141
5.2 Hybrid Neuro-Fuzzy Inference System (HyFIS). 146
5.3 Dynamic Evolving Neuro-Fuzzy Inference

Systems (DENFIS) . 149
5.4 Transductive Neuro-Fuzzy Inference Models 161
5.5 Other Evolving Fuzzy Rule-Based Connectionist Systems 168
5.6 Exercise. 175
5.7 Summary and Open Problems . 175
5.8 Further Reading . 175

6 Population-Generation-Based Methods: Evolutionary Computation . . . 177
6.1 A Brief Introduction to EC . 177
6.2 Genetic Algorithms and Evolutionary Strategies 179
6.3 Traditional Use of EC for Learning and Optimisation in ANN . . 183
6.4 EC for Parameter and Feature Optimisation of ECOS 185
6.5 EC for Feature and Model Parameter Optimisation

of Transductive Personalised (Nearest Neighbour) Models. . . 194
6.6 Particle Swarm Intelligence . 198
6.7 Artificial Life Systems (ALife) . 200
6.8 Exercise. 201
6.9 Summary and Open Questions . 202
6.10 Further Reading . 202

Contents xvii

7 Evolving Integrated Multimodel Systems 203
7.1 Evolving Multimodel Systems . 203
7.2 ECOS for Adaptive Incremental Data and Model Integration . . . 209
7.3 Integrating Kernel Functions and Regression Formulas in

Knowledge-Based ANN . 215
7.4 Ensemble Learning Methods for ECOS 219
7.5 Integrating ECOS and Evolving Ontologies 225
7.6 Conclusion and Open Questions 226
7.7 Further Reading . 227

Part II Evolving Intelligent Systems 229

8 Adaptive Modelling and Knowledge Discovery in Bioinformatics 231
8.1 Bioinformatics: Information Growth, and Emergence

of Knowledge . 231
8.2 DNA and RNA Sequence Data Analysis and

Knowledge Discovery . 236
8.3 Gene Expression Data Analysis, Rule Extraction, and

Disease Profiling . 242
8.4 Clustering of Time-Course Gene Expression Data 259
8.5 Protein Structure Prediction . 262
8.6 Gene Regulatory Networks and the System Biology Approach . . 265
8.7 Summary and Open Problems . 272
8.8 Further Reading . 273

9 Dynamic Modelling of Brain Functions and Cognitive Processes 275
9.1 Evolving Structures and Functions in the Brain and

Their Modelling . 275
9.2 Auditory, Visual, and Olfactory Information Processing and

Their Modelling . 282
9.3 Adaptive Modelling of Brain States Based on EEG and

fMRI Data. 290
9.4 Computational Neuro-Genetic Modelling (CNGM) 295
9.5 Brain–Gene Ontology . 299
9.6 Summary and Open Problems . 301
9.7 Further Reading . 302

10 Modelling the Emergence of Acoustic Segments in Spoken Languages . 303
10.1 Introduction to the Issues of Learning Spoken Languages. 303
10.2 The Dilemma ‘Innateness Versus Learning’ or ‘Nature Versus

Nurture’ Revisited . 305
10.3 ECOS for Modelling the Emergence of Phones and Phonemes . . 307
10.4 Modelling Evolving Bilingual Systems 316
10.5 Summary and Open Problems . 321
10.6 Further Reading . 323

11 Evolving Intelligent Systems for Adaptive Speech Recognition 325
11.1 Introduction to Adaptive Speech Recognition 325
11.2 Speech Signal Analysis and Speech Feature Selection 329

xviii Contents

11.3 Adaptive Phoneme-Based Speech Recognition 331
11.4 Adaptive Whole Word and Phrase Recognition 334
11.5 Adaptive, Spoken Language Human–Computer

Interfaces . 338
11.6 Exercise. 339
11.7 Summary and Open Problems . 339
11.8 Further Reading . 340

12 Evolving Intelligent Systems for Adaptive Image Processing 341
12.1 Image Analysis and Feature Selection 341
12.2 Online Colour Quantisation . 344
12.3 Adaptive Image Classification . 348
12.4 Incremental Face Membership Authentication and Face

Recognition . 350
12.5 Online Video-Camera Operation Recognition 353
12.6 Exercise. 357
12.7 Summary and Open Problems . 358
12.8 Further Reading . 358

13 Evolving Intelligent Systems for Adaptive Multimodal
Information Processing . 361
13.1 Multimodal Information Processing 361
13.2 Adaptive, Integrated, Auditory and Visual Information

Processing . 362
13.3 Adaptive Person Identification Based on Integrated Auditory

and Visual Information . 364
13.4 Person Verification Based on Auditory and Visual

Information. 373
13.5 Summary and Open Problems . 379
13.6 Further Reading . 380

14 Evolving Intelligent Systems for Robotics and Decision Support 381
14.1 Adaptive Learning Robots . 381
14.2 Modelling of Evolving Financial and Socioeconomic

Processes . 382
14.3 Adaptive Environmental Risk of Event Evaluation 385
14.4 Summary and Open Questions . 390
14.5 Further Reading . 391

15 What Is Next: Quantum Inspired Evolving Intelligent Systems? 393
15.1 Why Quantum Inspired EIS? . 393
15.2 Quantum Information Processing 394
15.3 Quantum Inspired Evolutionary Optimisation Techniques 396
15.4 Quantum Inspired Connectionist Systems. 398
15.5 Linking Quantum to Neuro-Genetic Information Processing:

Is This The Challenge For the Future? 400
15.6 Summary and Open Questions . 402
15.7 Further Reading . 403

Contents xix

Appendix A. A Sample Program in MATLAB for Time-Series Analysis 405

Appendix B. A Sample MATLAB Program to Record Speech
and to Transform It into FFT Coefficients as Features 407

Appendix C. A Sample MATLAB Program for Image Analysis and
Feature Extraction . 411

Appendix D. Macroeconomic Data Used in Section 14.2 (Chapter 14) 415

References . 417

Extended Glossary . 439

Index . 453

Abstract

This book covers contemporary computational modelling and machine-learning
techniques and their applications, where in the core of the models are artificial
neural networks and hybrid models (e.g. neuro-fuzzy) that evolve to develop their
structure and functionality through incremental adaptive learning. This is inspired
by the evolving nature of processes in the brain, the proteins, and the genes in a
cell, and by some quantum principles. The book also covers population/generation-
based optimisation of model parameters and features (variables), but the emphasis
is on the learning and the development of the structure and the functionality of
an individual model. In this respect, the book has a much wider scope than some
earlier work on evolutionary (population/generation)-based training of artificial
neural networks, called ‘evolving neural networks’.

This second edition of the book includes new methods, such as online
incremental feature selection, spiking neural networks, transductive neuro-fuzzy
inference, adaptive data and model integration, cellular automata and artificial life
systems, particle swarm optimisation, ensembles of evolving systems, and quantum
inspired neural networks.

In this book new applications are included to gene and protein interaction
modelling, brain data analysis and brain model creation, computational neuro-
genetic modelling, adaptive speech, image and multimodal recognition, language
modelling, adaptive robotics, modelling dynamic financial and socioeconomic
structures, and ecological and environmental event prediction. The main emphasis
here is on adaptive modelling and knowledge discovery from complex data.

A new feature of the book is the attempt to connect different structural and
functional elements in a single computational model. It looks for inspiration at
some functional relationships in natural systems, such as genetic and brain activity.

Overall, this book is more about problem solving and intelligent systems than
about mathematical proofs of theoretical models. Additional resources for practical
model creation, model validation, and problem solving, related to topics presented
in some parts of the book, are available from http://www.kedri.info/ ->books, and
from http://www.theneucom.com.

Evolving Connectionist Systems is aimed at students and practitioners interested
in developing and using intelligent computational models and systems to solve
challenging real-world problems in computer science, engineering, bioinformatics,
and neuro-informatics. The book challenges scientists with open questions about
future directions of information sciences.

xxi

PART I
Evolving Connectionist Methods

This part presents some existing connectionist and hybrid techniques for
adaptive learning and knowledge discovery and also introduces some new
evolving connectionist techniques. Three types of evolving adaptive methods
are presented, namely unsupervised, supervised, and reinforcement learning.
They include: evolving clustering, evolving self-organising maps, evolving fuzzy
neural networks, spiking neural networks, knowledge manipulation, and structure
optimisation with the use of evolutionary computation. The last chapter of
this part, Chapter 7, suggests methods for data, information, and knowledge
integration into multimodel adaptive systems and also methods for evolving
ensembles of ECOS. The extended glossary at the end of the book can be used
for a clarification of some of the used concepts.

Introduction
Modelling and Knowledge Discovery from Evolving
Information Processes

This introductory chapter presents the main concepts used in the book and gives a
justification for the development of this field. The emphasis is on a process/system
evolvability based on evolving rules (laws). To model such processes, to extract
the rules that drive the evolving processes, and to trace how they change over
time are among the main objectives of the knowledge engineering approach that
we take in this book. The introductory chapter consists of the following sections.

• Everything is evolving, but what are the evolving rules?
• Evolving intelligent systems (EIS) and evolving connectionist systems (ECOS)
• Biological inspirations for EIS and ECOS
• About the book
• Further reading

I.1 Everything Is Evolving, but What Are
the Evolving Rules?

According to the Concise Oxford English Dictionary (1983), ‘evolving’ means
‘revealing’, ‘developing’. It also means ‘unfolding, changing’. We define an evolving
process as a process that is developing, changing over time in a continuous manner.
Such a process may also interact with other processes in the environment. It may
not be possible to determine in advance the course of interaction, though. For
example, there may be more or fewer variables related to a process at a future
time than at the time when the process started.

Evolving processes are difficult to model because some of their evolving rules
(laws) may not be known a priori; they may dynamically change due to unexpected
perturbations, and therefore they are not strictly predictable in a longer term.
Thus, modelling of such processes is a challenging task with a lot of practical
applications in life sciences and engineering.

When a real process is evolving, a modelling system needs to be able to trace
the dynamics of the process and to adapt to changes in the process. For example,
a speech recognition system has to be able to adapt to various new accents, and
to learn new languages incrementally. A system that models cognitive tasks of

3

4 Evolving Connectionist Systems

the human brain needs to be adaptive, as all cognitive processes are evolving by
nature. (We never stop learning!) In bioinformatics, a gene expression modelling
system has to be able to adapt to new information that would define how a gene
could become inhibited by another gene, the latter being triggered by a third gene,
etc. There are an enormous number of tasks from life sciences where the processes
evolve over time.

It would not be an overstatement to say that everything in nature evolves. But
what are the rules, the laws that drive these processes, the evolving rules? And
how do they change over time? If we know these rules, we can make a model that
can evolve in a similar manner as the real evolving process, and use this model
to make predictions and to understand the real processes. But if we do not know
these rules, we can try to discover them from data collected from this process
using the knowledge engineering approach presented in this book.

The term ‘evolving’ is used here in a broader sense than the term ‘evolutionary’.
The latter is related to a population of individual systems traced over generations
(Charles Darwin; Holland, 1992), whereas the former, as it is used in this book,
is mainly concerned with the development of the structure and functionality of
an individual system during its lifetime (Kasabov, 1998a; Weng et al., 2001). An
evolutionary (population/generation) optimisation of the system can be applied
as well.

The most obvious example of an evolving process is life. Life is defined in
the Concise Oxford English Dictionary (1983) as ‘a state of functional activity
and continual change peculiar to organized matter, and especially to the portion
of it constituting an animal or plant before death, animate existence, being
alive.’ Continual change, along with certain stability, is what characterizes life.
Modelling living systems requires that the continuous changes are represented in
the model; i.e. the model adapts in a lifelong mode and at the same time preserves
some features and principles that are characteristic to the process. The ‘stability–
plasticity’ dilemma is a well-known principle of life that is also widely used in
connectionist computational models (Grossberg, 1969, 1982).

In a living system, evolving processes are observed at different levels (Fig. I.1).

6. Evolutionary (population/generation) processes
__
5. Brain cognitive processes

4. System information processing (e.g. neural ensemble)
___________ _____________________________________
3. Information processing in a cell (neuron)

2 Molecular information processing (genes, proteins)

1. Quantum information processing

Fig. I.1 Six levels of evolving processes in a higher-order living organism: evolution, cognitive brain processes,
brain functions in neural networks, single neuron functions, molecular processes, and quantum processes.

Introduction 5

At the quantum level, particles are in a complex evolving state all the time,
being in a superposion of several locations at the same time, which is defined
by probabilities. General evolving rules are defined by several principles, such as
entanglement, superposition, etc. (see Chapter 15).

At a molecular level, RNA and protein molecules, for example, evolve and
interact in a continuous way based on the DNA information and on the
environment. The central dogma of molecular biology constitutes a general
evolving rule, but what are the specific rules for different species and individuals?
The area of science that deals with the information processing and data manipu-
lation at this level is bioinformatics. Modelling evolving processes at the molecular
level is discussed in Chapter 8.

At the cellular level (e.g. a neuronal cell) all the metabolic processes, the cell
growing, cell division, etc., are evolving processes. Modelling evolving processes
in cells and neurons is discussed in Chapter 8.

At the level of cell ensembles, or at a neural network level, an ensemble of
cells (neurons) operates in concert, defining the function of the ensemble or the
network through learning, for instance, perception of sound, perception of an
image, or learning languages. An example of a general evolving rule is the Hebbian
learning rule (Hebb, 1949); see Chapter 9.

In the human brain, complex dynamic interactions between groups of neurons
can be observed when certain cognitive functions are performed, e.g. speech and
language learning, visual pattern recognition, reasoning, and decision making.
Modelling such processes is presented in Chapters 9 and 10.

At the level of population of individuals, species evolve through evolution. A
biological system evolves its structure and functionality through both lifelong
learning of an individual and the evolution of populations of many such individuals
(Charles Darwin; Holland, 1992). In other words, an individual is a result of
the evolution of many generations of populations, as well as a result of its own
developmental lifelong learning processes. The Mendelian and Darwinian rules of
evolution have inspired the creation of computational modelling techniques called
evolutionary computation, EC (Holland, 1992; Goldberg, 1989). EC is discussed in
Chapter 6, mainly from the point of view of optimisation of some parameters of
an evolving system.

All processes in Fig. I.1 are evolving. Everything is evolving, the living organisms
being more evolving than the other, but what are the evolving rules, the laws that
govern these processes? Are there any common evolving rules for every material
item and for every living organism, along with their specific evolving rules? And
what are the specific rules? Do these rules change over time; i.e. do they evolve as
well?

An evolving process, characterised by its evolving governing rules, manifests
itself in a certain way and produces data that in many cases can be measured.
Through analysis of these data, one can extract relationship rules that describe the
data, but do they describe the evolving rules of the process as well?

Processes at different levels from Fig. I.1 are characterised by general charac-
teristics, such as frequency spectrum, energy, information, and interaction as
explained below.

6 Evolving Connectionist Systems

1. Frequency spectrum

Frequency, denoted F, is defined as the number of a signal/event repetition over
a period of time T (seconds, minutes, centuries). Some processes have stable
frequencies, but others change their frequencies over time. Different processes
from Fig. I.1 are characterised by different frequencies, defined by their physical
parameters. Usually, a process is characterised by a spectrum of frequencies.
Different frequency spectrums characterise brain oscillations (e.g. delta waves,
Chapter 9), speech signals (Chapter 10), image signals (Chapter 11), or quantum
processes (Chapter 15).

2. Energy

Energy is a major characteristic of any object and organism. Albert Einstein’s most
celebrated energy formula defines energy E as depending on the mass of the object
m and the speed of light c:

E = mc2 (I.1)

The energy of a protein, for example, depends not only on the DNA sequence that
is translated into this protein, but on the 3D shape of the protein and on external
factors.

3. Information

Generally speaking, information is a report, a communication, a measure, a repre-
sentation of news, events, facts, knowledge not known earlier. This is a character-
istic that can be defined in different ways. One of them is entropy; see Chapter 1.

4. Interaction, connection with other elements of the system (e.g. objects, particles)

There are many interactions within each of the six levels from Fig. I.1 and across
these levels. Interactions are what make a living organism a complex one, and that
is also a challenge for computational modelling. For example, there are complex
interactions between genes in a genome, and between proteins and DNA. There
are complex interactions between the genes and the functioning of each neuron, a
neural network, and the whole brain. Abnormalities in some of these interactions
are known to have caused brain diseases and many of them are unknown at
present (see the section on computational neuro-genetic modelling in Chapter 9).

An example of interactions between genes and neuronal functions is the
observed dependence between long-term potentiation (learning) in the synapses
and the expression of the immediate early genes and their corresponding proteins
such as Zif/268 (Abraham et al., 1993). Genetic reasons for several brain diseases
have been already discovered (see Chapter 9).

Generally speaking, neurons from different parts of the brain, associated
with different functions, such as memory, learning, control, hearing, and vision,
function in a similar way. Their functioning is defined by evolving rules and
factors, one of them being the level of neuro-transmitters. These factors are

Introduction 7

controlled at a genetic level. There are genes that are known to regulate the level
of neuro-transmitters for different types of neurons from different areas of the
brain (RIKEN, 2001). The functioning of these genes and the proteins produced
can be controlled through nutrition and drugs. This is a general principle that can
be exploited for different models of the processes from Fig. I.1 and for different
systems performing different tasks, e.g. memory and learning; see Benuskova and
Kasabov (2007). We refer to the above in the book as neuro-genetic interactions
(Chapter 9).

Based on the evolving rules, an evolving process would manifest different
behaviour:

• Random: There is no rule that governs the process in time and the process is
not predictable.

• Chaotic: The process is predictable but only in a short time ahead, as the process
at a time moment depends on the process at previous time moments via a
nonlinear function.

• Quasi-periodic: The process is predictable subject to an error. The same rules
apply over time, but slightly modified each time.

• Periodic: The process repeats the same patterns of behaviour over time and is
fully predictable (there are fixed rules that govern the process and the rules do
not change over time).

Many complex processes in engineering, social sciences, physics, mathematics,
economics, and other sciences are evolving by nature. Some dynamic time series in
nature manifest chaotic behaviour; i.e. there are some vague patterns of repetition
over time, and the time series are approximately predictable in the near future,
but not in the long run (Gleick, 1987; Barndorff-Nielsen et al., 1993; Hoppensteadt,
1989; McCauley, 1994). Chaotic processes are usually described by mathematical
equations that use some parameters to evaluate the next state of the process from
its previous states. Simple formulas may describe a very complicated behaviour
over time: e.g. a formula that describes fish population growth F�t + 1� is based
on the current fish population F�t� and a parameter g (Gleick, 1987):

F�t +1� = 4gF�t��1−F�t�� (I.2)

When g > 0�89, the function becomes chaotic.
A chaotic process is defined by evolving rules, so that the process lies on the

continuum of ‘orderness’ somewhere between random processes (not predictable
at all) and quasi-periodic processes (predictable in a longer timeframe, but only to
a certain degree). Modelling a chaotic process in reality, especially if the process
changes its rules over time, is a task for an adaptive system that captures the
changes in the process in time, e.g. the value for the parameter g from the formula
above.

All problems from engineering, economics, and social sciences that are charac-
terised by evolving processes require continuously adapting models to model them.
A speech recognition system, an image recognition system, a multimodal infor-
mation processing system, a stock prediction system, or an intelligent robot, for
example, a system that predicts the emergence of insects based on climate, etc.
should always adjust its structure and functionality for a better performance over
time, which is the topic of Part II of the book, evolving intelligent systems.

8 Evolving Connectionist Systems

I.2 Evolving Intelligent Systems (EIS) and Evolving
Connectionist Systems (ECOS)

Despite the successfully developed and used methods of computational intelligence
(CI), such as artificial neural networks (ANN), fuzzy systems (FS), evolutionary
computation, hybrid systems, and other methods and techniques for adaptive
machine learning, there are a number of problems while applying these techniques
to complex evolving processes:

1. Difficulty in preselecting the system’s architecture: Usually a CI model has a
fixed architecture (e.g. a fixed number of neurons and connections). This makes
it difficult for the system to adapt to new data of unknown distribution. A
fixed architecture would definitely prevent the ANN from learning in a lifelong
learning mode.

2. Catastrophic forgetting: The system would forget a significant amount of old
knowledge while learning from new data.

3. Excessive training time required: Training an ANN in a batch mode usually
requires many iterations of data propagation through the ANN structure. This
may not be acceptable for an adaptive online system, which would require fast
adaptation.

4. Lack of knowledge representation facilities: Many of the existing CI architectures
capture statistical parameters during training, but do not facilitate extracting the
evolving rules in terms of linguistically meaningful information. This problem
is called the ‘black box’ problem. It occurs when only limited information is
learned from the data and essential aspects, that may be more appropriate and
more useful for the future work of the system, are missed forever.

To overcome the above problems, improved and new connectionist and hybrid
methods and techniques are required both in terms of learning algorithms and
system development.

Intelligence is seen by some authors as a set of features or fixed properties of the
mind that are stable and static. According to this approach, intelligence is genet-
ically defined – given – rather than developed. Contrary to this view, intelligence
is viewed by other authors as a constant and continuous adaptation. Darwin’s
contemporary H. Spencer proposed in 1855 the law of intelligence, stating that
‘the fundamental condition of vitality is that the internal state shall be continually
adjusted to the external order’ (Richardson, 1999, p. 14). Intelligence is ‘the faculty
of adapting oneself to circumstances,’ according to Henri Simon and Francis Binet,
the authors of the first IQ test (see Newell and Simon (1972)). In Plotkyn (1994),
intelligence is defined as ‘the human capacity to acquire knowledge, to acquire a
set of adaptations and to achieve adaptation.’

Knowledge representation, concept formation, reasoning, and adaptation are
obviously the main characteristics of intelligence upon which all authors agree
(Rosch and Lloyd, 1978; Smith and Medin, 1981). How these features can be
implemented and achieved in a computer model is the main objective of the area
of artificial intelligence (AI).

AI develops methods, tools, techniques, and systems that make possible the
implementation of intelligence in computer models. This is a ‘soft’ definition of

Introduction 9

AI, which is in contrast to the first definition of AI (the ‘hard’ one) given by Alan
Turing in 1950. According to the Turing test for AI, if a person communicates
in natural language with another person or an artificial system behind a barrier
without being able to distinguish between the two, and also without being able
to identify whether this is a male or a female, as the system should be able to
fool the human in this respect, then if it is a system behind the barrier, it can be
considered an AI system. The Turing test points to an ultimate goal of AI, which
is the understanding of concepts and language, but on the other hand it points to
no direction or criteria to develop useful AI systems.

In a general sense, information systems should help trace and understand the
dynamics of the modelled processes, automatically evolve rules, ‘knowledge’ that
captures the essence of these processes, ‘take a short cut’ while solving a problem
in a complex problem space, and improve their performance all the time. These
requirements define a subset of AI which is called here evolving intelligent systems
(EIS). The emphasis here is not on achieving the ultimate goal of AI, as defined
by Turing, but rather on creating systems that learn all the time, improve their
performance, develop a knowledge representation for the problem in hand, and
become more intelligent.

A constructivist working definition of EIS is given below. It emphasises the
dynamic and the knowledge-based structural and functional self-development of
a system.

EIS is an information system that develops its structure, functionality, and
knowledge in a continuous, self-organised, adaptive, and interactive way from
incoming information, possibly from many sources, and performs intelligent tasks
typical for humans (e.g. adaptive pattern recognition, concept formation, language
learning, intelligent control) thus improving its performance.

David Fogel (2002), in his highly entertaining and highly sophisticated book,
Blondie 24 – Playing at the Edge of AI, describes a case of EIS as a system that
learns to play checkers online without using any instructions, and improves after
every game. The system uses connectionist structure and evolutionary algorithms
along with statistical analysis methods.

EIS are presented here in this book in the form of methods of evolving connec-
tionist systems (ECOS) and their applications. An ECOS is an adaptive, incre-
mental learning and knowledge representation system that evolves its structure and
functionality, where in the core of the system is a connectionist architecture that
consists of neurons (information processing units) and connections between them.
An ECOS is a CI system based on neural networks, but using other techniques of
CI that operate continuously in time and adapt their structure and functionality
through a continuous interaction with the environment and with other systems
(Fig. I.2). The adaptation is defined through:

1. A set of evolving rules
2. A set of parameters (“genes”) that are subject to change during the system

operation
3. An incoming continuous flow of information, possibly with unknown

distribution
4. Goal (rationale) criteria (also subject to modification) that are applied to

optimise the performance of the system over time

10 Evolving Connectionist Systems

Environment

ECOS

Fig. I.2 EIS, and ECOS in particular, evolve their structure and functionality through incremental (possibly
online) learning in time and interaction with the environment.

The methods of ECOS presented in the book can be used as traditional CI
techniques, but they also have some specific characteristics that make them appli-
cable to more complex problems:

1. They may evolve in an open space, where the dimensions of the space can
change.

2. They learn via incremental learning, possibly in an online mode.
3. They may learn continuously in a lifelong learning mode.
4. They learn both as individual systems and as an evolutionary population of

such systems.

Environment

D
at

a Pre-processing,
Feature Extraction
Labelling

Modelling,
Learning,
Knowledge discovery

Information

Human

Knowledge

Adaptation

Control

Sound

Image

Video

Numbers

Sensors

Other Sources

DNA

Brain Signals

Environmental and
Social Information

Stock Market

Fig. I.3 An EIS, and ECOS in particular, consists of four parts: data acquisition, feature extraction, modelling,
and knowledge acquisition. They process different types of information in a continuous adaptive way, and
communicate with the user in an intelligent way providing knowledge (rules). Data can come from different
sources: DNA (Chapter 8), brain signals (Chapter 9), socioeconomic and ecological data (Chapter 14), and from
many others.

Introduction 11

5. They use constructive learning and have evolving structures.
6. They learn and partition the problem space locally, thus allowing for a fast

adaptation and tracing the evolving processes over time.
7. They evolve different types of knowledge representation from data, mostly a

combination of memory-based, statistical, and symbolic knowledge.

Each EIS system, and an ECOS in particular, consists of four main parts:

1. Data acquisition
2. Preprocessing and feature evaluation
3. Modelling
4. Knowledge acquisition

Figure I.3 illustrates the different parts of an EIS that processes different types
of information in a continuous adaptive way. The online processing of all this
information makes it possible for the ECOS to interact with users in an intelligent
way. If human–system interaction can be achieved in this way, this can be used to
extend system–system interactions as well.

I.3 Biological Inspirations for EIS and ECOS

Some of the methods for EIS and ECOS presented in Chapters 2 through 6 use
principles from the human brain, as discussed here and in many publications
(e.g. Arbib (1995, 2002) and Kitamura (2001)).

It is known that the human brain develops before the child is born. During
learning the brain allocates neurons to respond to certain stimuli and develops
their connections. Some parts of the brain develop connections and also retain
their ability to create neurons during the person’s lifetime. Such an area is
the hippocampus (Erikson et al., 1998; McClelland et al., 1995). According to
McClelland et al. (1995) the sequential acquisition of knowledge is due to the
continuous interaction between the hippocampus and the neocortex. New nerve
cells have a crucial role in memory formation.

The process of brain development and learning is based on several principles
(van Owen, 1994; Wong, 1995; Amit, 1989; Arbib, 1972, 1987, 1998, 1995, 2002;
Churchland and Sejnowski, 1992; J. G. Taylor, 1998, 1999; Deacon, 1988, 1998;
Freeman, 2001; Grossberg, 1982; Weng et al., 2001), some of them used as inspi-
rations for the development of ECOS:

1. Evolution is achieved through both genetically defined information and
learning.

2. The evolved neurons in the brain have a spatial–temporal representation where
similar stimuli activate close neurons.

3. Redundancy is the evolving process in the brain leading to the creation of a
large number of neurons involved in each learned task, where many neurons
are allocated to respond to a single stimulus or to perform a single task; e.g.
when a word is heard, there are hundreds of thousands of neurons that are
immediately activated.

12 Evolving Connectionist Systems

4. Memory-based learning, i.e. the brain stores exemplars of facts that can be
recalled at a later stage. Bernie Widrow (2006) argues that learning is a process
of memorising and everything we do is based on our memory.

5. Evolving through interaction with the environment.
6. Inner processes take place, e.g. sleep-learning and information consolidation.
7. The evolving process is continuous and lifelong.
8. Through learning, higher-level concepts emerge that are embodied in the

evolved brain structure, and can be represented as a level of abstraction (e.g.
acquisition and the development of speech and language, especially in multi-
lingual subjects).

Learning and structural evolution coexist in the brain. The neuronal structures
eventually implement a long-term memory. Biological facts about growing neural
network structures through learning and adaptation are presented in Joseph (1998).

The observation that humans (and animals) learn through memorising sensory
information, and then interpreting it in a context-driven way, has been known
for a long time. This is demonstrated in the consolidation principle that is widely
accepted in physiology. It states that in the first five or so hours after presenting
input stimuli to a subject, the brain is learning to ‘cement’ what it has perceived.
This has been used to explain retrograde amnesia (a trauma of the brain that
results in loss of memory about events that occurred several hours before the
event of the trauma). The above biological principle is used in some methods of
ECOS in the form of sleep, eco-training mode.

During the ECOS learning process, exemplars (or patterns) are stored in a long-
term memory. Using stored patterns in the eco-training mode is similar to the
task rehearsal mechanism (TRM). The TRM assumes that there are long-term and
short-term centres for learning (McClelland et al., 1995). According to the authors,
the TRM relies on long-term memory for the production of virtual examples of
previously learned task knowledge (background knowledge). A functional transfer
method is then used to selectively bias the learning of a new task that is developed
in short-term memory. The representation of this short-term memory is then
transferred to long-term memory, where it can be used for learning yet another new
task in the future. Note that explicit examples of a new task need not be stored in
long-term memory, only the representation of the task, which can be used later
to generate virtual examples. These virtual examples can be used to rehearse
previously learned tasks in concert with a new ‘related’ task.

But if a system is working in a real-time mode, it may not be able to adapt to
new data due to lack of sufficient processing speed. This phenomenon is known
in psychology as ‘loss of skills’. The brain has a limited amount of working short-
term memory. When encountering important new information, the brain stores
it simply by erasing some old information from the working memory. The prior
information gets erased from the working memory before the brain has time to
transfer it to a more permanent or semi-permanent location for actual learning.
ECOS sleep-training is based on similar principles.

In Freeman (2000), intelligence is described as related to an active search for
information, goal-driven information processing, and constant adaptation. In this
respect an intelligent system has to be actively selecting data from the environment.
This feature can be modelled and is present in ECOS through data and feature

Introduction 13

selection for the training process. The filtering part of the ECOS architecture from
Fig. I.3 serves as an active filter to select only ‘appropriate’ data and features from
the data streams. Freeman (2000) describes learning as a reinforcement process
which is also goal-driven.

Part of the human brain works as associative memory (Freeman, 2000). The
ECOS models can be used as associative memories, where the first part is trained
in an unsupervised mode and the second part in a reinforcement or supervised
learning mode.

Humans are always seeking information. Is it because of the instinct for survival?
Or is there another instinct, an instinct for information? If that is true, how is
this instinct defined, and what are its rules? Although Perlovski (2006) talks about
cognitive aspects of this instinct; here we refer to the genetic aspects of the instinct.
In Chapter 9 we refer to genes that are associated with long-term potentiation in
synapses, which is a basic neuronal operation of learning and memory (Abraham
et al., 1993; Benuskova and Kasabov, 2006). We also refer to genes associated with
loss of memory and other brain diseases that affect information processing in
the brain, mainly the learning and the memory functions. It is now accepted that
learning and memory are both defined genetically and developed during the life
of an individual through interaction with the environment.

Principles of brain and gene information processing have been used as an
inspiration to develop the methods of ECOS and to apply them in different chapters
of the book.

The challenge for the scientific area of computational modelling, and for the
ECOS paradigm in particular, is how to create structures and algorithms that solve
complex problems to enable progress in many scientific areas.

I.4 About the Book

Figure I.4 represents a diagram that links the inspirations/principles, the ECOS
methods, and their applications covered in different chapters of the book.

I.5 Further Reading

• The Nature of Knowledge (Plotkyn, 1994)
• Cognition and Categorization (Rosch and Lloyd, 1978)
• Categories and Concepts (Smith and Medin, 1981).
• Chaotic Processes (Barndorff-Nielsen et al., 1993; Gleick, 1987; Hoppensteadt,

1989; McCauley, 1994; Erdi, 2007)
• Emergence and Evolutionary Processes (Holland, 1998)
• Different Aspects of Artificial Intelligence (Dean et al., 1995; Feigenbaum, 1989;

Hofstadter, 1979; Newell and Simon, 1972)
• Alan Turing’s Test for AI (Fogel, 2002; Hofstadter, 1979)
• Emerging Intelligence (Fogel, 2002)
• Evolving Connectionist Systems as Evolving Intelligence (Kasabov, 1998–2006)
• Evolving Processes in the Brain (Freeman, 2000, 2001)

14 Evolving Connectionist Systems

Fig. I.4 A block diagram schematically showing principles, methods, and applications covered in the book in
their relationship.

• Evolving Consciousness (Taylor, 1999, 2005)
• Principles of the Development of the Human Brain (Amit, 1989; Arbib, 1972,

1987, 1998, 1995, 2002; Churchland and Sejnowski, 1992; Deacon, 1988, 1998;
Freeman, 2001; Grossberg, 1982; Joseph, 1998; J. G. Taylor, 1998, 1999; van Owen,
1994; Wong, 1995)

• Learning in the Hippocampus Brain (Durand et al., 1996; Eriksson et al., 1998;
Grossberg and Merrill, 1996; McClelland et al., 1995)

• Biological Motivations Behind ECOS (Kasabov, 1998; Kitamura, 2001)
• Autonomous Mental Development (J.Weng et al., 2001)

1. Feature Selection, Model Creation,
and Model Validation

This chapter presents background information, methods, and techniques of
computational modelling that are used in the other chapters. They include methods
for feature selection, statistical learning, and model validation. Special attention
is paid to several contemporary issues such as incremental feature selection and
feature evaluation, inductive versus transductive learning and reasoning, and
a comprehensive model validation. The chapter is presented in the following
sections.

• Feature selection and feature evaluation
• Incremental feature selection
• Machine learning methods – a classification scheme
• Probability and information measure. Bayesian classifiers, hidden Markov

models, and multiple linear regressions
• Support vector machines
• Inductive versus transductive learning and reasoning. Global versus local models
• Model validation
• Exercise
• Summary and open problems
• Further reading

1.1 Feature Selection and Feature Evaluation

Feature selection is the process of choosing the most appropriate features
(variables) when creating a computational model (Pal, 1999).

Feature evaluation is the process of establishing how relevant to the problem in
hand (e.g. the classification of gene expression microarray data) are the features
(e.g. the genes) used in the model.

Features can be:

• Original variables, used in the first instance to specify the problem (e.g. raw
pixels of an image, an amplitude of a signal, etc.)

• Transformed variables, obtained through mapping the original variable space
into a new one (e.g. principle component analysis (PCA); linear discriminant
analysis (LDA); fast Fourier transformation (FFT), SVM, etc.)

15

16 Evolving Connectionist Systems

There are different groups of methods for feature selection:

• Filtering methods: The features are ‘filtered’, selected, and ranked in advance,
before a model is created (e.g. a classification model).

• Wrapping methods: Features are selected on the basis of how well the created
model performs using these features.

Traditional filtering methods are: correlation, t-test, and signal-to-noise ratio
(SNR).

Correlation coefficients represent the relationship between the variables,
including a class variable if such is available. For every variable xi �i = 1� 2� � � � � d1�
its correlation coefficients Corr(xi� yj� with all other variables, including output
variables yj � j = 1� 2� � � � � d2�, are calculated. The following is the formula to
calculate the Pearson correlation between two variables x and y based on n values
for each of them:

Corr =
n∑

i=1

��xi −Mx��yi −My��/��n−1� Stdx Stdy� (1.1)

where Mx and My are the mean values of the two variables x and y, and Stdx and
Stdy are their respective standard deviations.

The t-test and the SNR methods evaluate how important a variable is to discrim-
inate samples belonging to different classes. For the case of a two-class problem,
a SNR ranking coefficient for a variable x is calculated as an absolute difference
between the mean value M1x of the variable for class 1 and the mean M2x of this
variable for class 2, divided to the sum of the respective standard deviations:

SNR_x = abs �M1x−M2x�/�Std1x+Std2x�� (1.2)

A similar formula is used for the t-test:

t-test_x = abs�M1x−M2x�/�Std1x2/N1+Std2x2/N2� (1.3)

where N1 and N2 are the numbers of samples in class 1 and class 2 respectively.
Figure 1.1a shows a graphical representation of the correlation coefficients of

all four inputs and the class variables of the Iris benchmark data, and Fig. 1.1b
gives the SNR ranking of the variables. The Iris benchmark data consist of 150
samples defined by four variables: sepal length, sepal width, petal length, petal
width (in cm) Each of these samples belongs to one of three classes: Setosa,
Versicolour, or Virginica (Fisher, 1936). There are 50 samples of each class.

Principal component analysis aims at finding a representation of a problem
space X defined by its variables X = �x1� x2� � � � � xn	 into another orthogonal
space having a smaller number of dimensions defined by another set of variables
Z = �z1� z2� � � � � zm	, such that every data vector x from the original space is
projected into a vector z of the new space, so that the distance between different
vectors in the original space X is maximally preserved after their projection into
the new space Z. A PCA projection of the Iris data is shown in Fig. 1.2a.

Linear discriminant analysis is a transformation of classification data from the
original space into a new space of LDA coefficients that has an objective function

Feature Selection, Model Creation, and Model Validation 17

(a)

(b)

Fig. 1.1 (a) Correlation coefficients between the five variables in the Iris data set (four input variables and
one class variable encoding class Setosa as 1, Versicolour as 2, and Virginica as 3); (b) SNR ranking of the four
variables of the Iris case study data (variable 3, petal length is ranked the highest). A colour version of this
figure is available from www.kedri.info.

to preserve the distance between the samples using also the class label to make
them more distinguishable between the classes. An LDA projection of the Iris data
is shown in Fig. 1.2a.

18 Evolving Connectionist Systems

(a)

(b)

Fig. 1.2 (a) PCA transformation (unsupervised, uses only input variables) of the Iris case study data: the first
principal component alone accounts for more than 90% of the variation among the data samples; (b) LDA
transformation of the Iris case study data gives a better discrimination than the PCA as it uses class labels to
achieve the transformation (it is supervised). (See a colour version at www.kedri.info)

Feature Selection, Model Creation, and Model Validation 19

Another benchmark dataset used in the book is the gas-furnace time-series
data (Box and Jenkins, 1970). A quantity of methane gas (representing the first
independent variable) is fed continuously into a furnace and the CO2 gas produced
is measured every minute (a second independent variable). This process can
theoretically run forever, supposing that there is a constant supply of methane
and the burner remains mechanically intact. The process of CO2 emission is an
evolving process. In this case it depends on the quantity of the methane supplied
and on the parameters of the environment. For simplicity, only 292 values of CO2

are taken in the well-known gas-furnace benchmark problem. Given the values of
methane at a particular moment (t − 4) and the value of CO2 at the moment (t)
the task is to predict the value for CO2 at the moment (t + 1) (output variable).
The CO2 data from Box and Jenkins (1970), along with some of their statistical
characteristics, are plotted in Fig. 1.3. It shows the 292 points from the time series,
the 3D phase space, the histogram, and the power spectrum of the frequency
characteristics of the process. The program used for this analysis as well as for some
other time-series analysis and visualisation in this book is given in Appendix A.

Several dynamic benchmark time series have been used in the literature and
also in this book. We develop and test evolving models to model the well-known
Mackey–Glass chaotic time series x�t�, defined by the Mackey–Glass time delay
differential equation (see Farmer and Sidorovich (1987)):

dx

d�t�
= ax�t −
�

1+x10 �t −
�
−bx�t� (1.4)

0 100 200 300
45

50

55

60

65

Time t
Histogram

x
=

 C
O

2(
t)

The gas furnace time series

40
60

80

40
60

80
40

60

80

x(t)

The 3D phase space

x(t + 1)

x(
t +

 2
)

45 50 55 60 65
0

20

40

60

CO2 values

R
ep

et
iti

ve
 o

cc
ur

an
ce

0 50 100 150
10–5

100

105

1010

Frequency

PS
D

Power spectrum

Fig. 1.3 The gas-furnace benchmark dataset, statistical characteristics.

20 Evolving Connectionist Systems

Fig. 1.4 Statistical parameters of a series of 3000 values from the Mackey–Glass time series. Top left: 3000
data points from the time series; top right: a 3D phase space; bottom left: the histogram of the time-series
values; bottom right: the power spectrum, showing on the x-axis frequencies of repetition, and on the y-axis:
the power of this repetition.

This series behaves as a chaotic time series for some values of the parameters
, a,
and b, and for the initial value of x, x(0); for example, x�0� = 1�2,
 = 17, a = 0�2,
b = 0�1, and x�t� = 0 for t < 0. Some of the statistical characteristics of the Mackey–
Glass time series are plotted in Fig. 1.4. Predicting future values from past values of a
chaotic time series is a problem with which many computer models deal. Such a task
is to predict the future values, x�t +6� or x�t +85�, from the past values x�t�, x�t −6�,
x�t −12�, and x�t −18� of the Mackey–Glass series, as illustrated in Chapters 2 and 3.

Some dynamic chaotic processes occupy comparatively small parts of the space
they evolve in; that is, they form fractals (see the 3D space graph in Fig. 1.4). The
dimension of the problem space is a fraction of the standard integer dimensions,
e.g. 2.1D instead of 3D.

1.2 Incremental Feature Selection

In EIS features may need to be evaluated in an incremental mode too, at each time
using the most relevant features. The set of features used may change from one
time interval to another based on changes in the modelled data. This is a difficult
task and only a few techniques for achieving it are discussed here.

Incremental Correlation Analysis

Correlation analysis can be applied in an incremental mode, as outlined in the
algorithm shown in Fig. 1.5. This is based on the incremental calculation of the
mean and the standard deviation of the variable.

Feature Selection, Model Creation, and Model Validation 21

Calculating the online correlation coefficient CorrXY
between two variables: an input variable X, and an output variable
Y

SumX = 0;
SumY = 0;
SumXY = 0;
SumX2 = 0;
SumY2 = 0;
CorrXY = [];

WHILE there are data pairs (x,y) from the input stream, DO
{
 INPUT the current data pair (x(i), y(i));

 SumX = SumX+x(i);
 SumY = SumY+y(i);
 AvX = SumX/i;
 AvY = SumY/i;
 SumXY = SumXY + (x(i) – AvX)*(y(i) – AvY);
 SumX2 = SumX2 + (x(i) – AvX)^2;
 SumY2 = SumY2 + (y(i) – AvY)^2;
 the current value for the correlation coefficient is:
 CorrXY(i) = SumXY / sqrt(SumX2 * SumY2);
}

Fig. 1.5 An illustrative algorithm for online correlation analysis. The operations in the algorithm are whole-vector
operations expressed in the notation of MATLAB.

An example is given in Fig. 1.6. The figure shows the graphs of the euro/US$
exchange rate and the Dow Jones index over time, along with the online
calculated correlation between the two time series using the algorithm from
Fig. 1.5 (the bottom line). It can be seen that the correlation coefficient changes
over time.

In many classification problems there is a data stream that contains different
chunks of data, each having a different number of samples of each class. New class
samples can emerge as well; see Fig. 1.7a (see Ozawa et al. (2005, 2006)).

Incremental selection of features is a complex procedure. S. Ozawa et al., (2005,
2006) have introduced a method for incremental PCA feature selection where after
the presentation of a new sample from the input data stream (or a chunk of data)
a new PCA axis may be created (Fig.1.7b) or an axis can be rotated (Fig.1.7c) based
on the position of the new sample in the PCA space. An algorithm for incremental
LDA feature selection is proposed in S. Pang et al. (2005).

1.3 Machine Learning Methods – A Classification Scheme

Machine learning is an area of information science concerned with the creation of
information models from data, with the representation of knowledge, and with the
elucidation of information and knowledge from processes and objects. Machine
learning includes methods for feature selection, model creation, model validation,
and knowledge extraction (see Fig. I.3).

22 Evolving Connectionist Systems

0 100 200 300 400 500 600
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

time 01/01/99–29/03/01

N
or

m
al

is
ed

 in
 [

0,
1]

 D
J

an
d

E
ur

o/
E

U
S

an
d

th
e

on
lin

e
co

rr
el

at
io

n
Online correlation between DJ and the Euro/US$

Fig. 1.6 The values of the euro/US$ exchange rate normalized in the interval [0,1] and the Dow Jones stock
index as evolving time series, and the online correlation (the bottom line) between them for the period 1
January 1999 until 29 March 2001. The correlation coefficient changes over time and it is important to be able
to trace this process. The first 100 or so values of the calculated correlation coefficient should be ignored, as
they do not represent a meaningful statistical dependence.

Here we talk mainly about learning in connectionist systems (neural
networks, ANN) even though the principles of these methods and the classifi-
cation scheme presented below are valid for other machine learning methods
as well.

Most of the known ANN learning algorithms are influenced by a concept intro-
duced by Donald O. Hebb (1949). He proposed a model for unsupervised learning

t1 t2 t3 ti

(a)

Fig. 1.7 (a) A data stream that contains chunks of data characterised by different numbers of samples (vectors,
examples) from different classes; (Continued overleaf)

Feature Selection, Model Creation, and Model Validation 23

h

a new axis is added.

(b)

If > θ,h

Eigen-axis Rotation

(c)

Fig. 1.7 (continued) (b) incremental PCA through new PCA axis creation: when a new data vector is entered
and the distance between this vector and the existing eigenvector (PCA axis) is larger than a threshold, a new
eigenaxis is created; (c) incremental PCA with axis rotation: when a new vector is added, the eigenvectors may
need to be rotated (from Ozawa et al. (2005, 2006)).

in which the synaptic strength (weight) is increased if both the source and the
destination neurons become simultaneously activated. It is expressed as

wij �t +1� = wij �t�+ c� oi� oj� (1.5)

where wij�t� is the weight of the connection between the ith and jth neurons at the
moment t, and oi and oj are the output signals of neurons i and j at the same moment
t. The weight wij�t +1� is the adjusted weight at the next time moment �t +1�.

In general terms, a connectionist system {S, W, P, F, L, J} that is defined by
its structure S, its parameter set P, its connection weights W , its function F, its
goal function J , and a learning procedure L, learns if the system optimises its
structure and its function F when observing events z1� z2� z3� � � � from a problem
space Z. Through a learning process, the system improves its reaction to the
observed events and captures useful information that may be later represented as
knowledge. In Tsypkin (1973) the goal of a learning system is defined as finding
the minimum of an objective function J�S� named ‘the expected risk function’.
The function J�S� can be represented by a loss function Q�Z� S� and an unknown
probability distribution Prob(Z).

24 Evolving Connectionist Systems

Most of the learning systems optimise a global goal function over a fixed part
of the structure of the system. In ANN this part is a set of predefined and fixed
number of connection weights, i.e. a set number of elements in the set W . As an
optimisation procedure, some known statistical methods for global optimisation
are applied (Amari, 1967, 1990), for example, the gradient descent method. The
obtained structure S is expected to be globally optimal, i.e. optimal for data drawn
from the whole problem space Z. In the case of a changing structure S and a
changing (e.g. growing) part of its connections W , where the input stream of data
is continuous and its distribution is unknown, the goal function could be expressed
as a sum of local goal functions J , each one optimised in a small subspace Z ′ ⊂ Z
as data are drawn from this subspace. In addition, while the learning process is
taking place, the number of dimensions of the problem space Z may also change
over time. The above scenarios are reflected in different models of learning, as
explained next.

There are many methods for machine learning that have been developed for
connectionist architectures (for a review, see Arbib (1995, 2002)). It is difficult
and quite risky to try to put all the existing methods into a clear classification
structure (which should also assume ‘slots’ for new methods), but this is necessary
here in order to define the scope of the evolving connectionist system paradigm.
This also defines the scope of the book.

A classification scheme is presented below. This scheme is a general one, as
it is valid not only for connectionist learning models, but also for other learning
paradigms, for example, evolutionary learning, case-based learning, analogy-based
learning, and reasoning. On the other hand, the scheme is not comprehensive, as
it does not present all existing connectionist learning models. It is only a working
classification scheme needed for the purpose of this book.

A (connectionist) system that learns from observations z1, z2, z3, … from
a problem space Z can be designed to perform learning in different ways. The
following classification scheme outlines the main questions and issues and their
alternative solutions when constructing a connectionist learning system.

1. In what space is the learning system developing?
(a) The learning system is developing in the original data space Z.

The structural elements (nodes) of the connectionist learning system
are points in the d-dimensional original data space Z (Fig. 1.8a). This is
the case in some clustering and prototype learning systems. One of the
problems here is that if the original space is high-dimensional (e.g. 30,000
gene expression space) it is difficult to visualise the structure of the system
and observe some important patterns. For this purpose, special visual-
isation techniques, such as principal component analysis, or Sammon
mapping, are used to project the system structure S into a visualisation
space V.

(b) The learning system is developing in its own machine learning space M.
The structural elements (nodes) of the connectionist learning system are

created in a system (machine) space M, different from the d-dimensional
original data space Z (Fig. 1.8b). An example is the self-organising map
(SOM) NN (Kohonen, 1977, 1982, 1990, 1993, 1997). SOMs develop in
two-, three-, or more-dimensional topological spaces (maps) from the
original data.

Feature Selection, Model Creation, and Model Validation 25

3
1

7
1

6
1

1
1

2
1

4
1

5
1

Visualisation (Projection)

Space V

1 3

4
5

6

7

Connectionist model
Time

(a)

Data points

Visualisation

Problem
Space Z

2

(b)

Data points

Time

1 2

5

3

6
4

“Machine” space
of the evolving
system (e.g. 3D)

Problem Space Z

Fig. 1.8 (a) A computational model is built in the original data space; i.e. the original problem variables are
used and a network of connections is built to model their interaction; a special visualisation procedure may be
used to visualise the model in a different space; (b) a computational model is built in a new (‘machine’) space,
where the original variables are transformed into a new set of variables.

2. Is the problem space open?
(a) An open problem space is characterised by an unknown probability distri-

bution P�Z� of the incoming data and a possible change in its dimen-
sionality. Sometimes the dimensionality of the data space may change
over time, involving more or fewer dimensions, for example, adding new
modalities to a person identification system. In this case the methods
discussed in the previous section for incremental feature selection would
be appropriate.

26 Evolving Connectionist Systems

(b) A closed problem space has a fixed dimensionality, and either a known
distribution of the data or the distribution can be approximated in advance
through statistical procedures.

3. Is learning performed in an incremental or in a batch mode, in an off-line or
in an online mode?
(a) Batch-mode and pattern modes of learning: In a batch mode of learning a

predefined learning (training) set of data �z1� z2� � � �� zp	 is learned by the
system through propagating this dataset several times through the system.
Each time the system optimises its structure W , based on the average value
of the goal function over the whole dataset. Many traditional algorithms,
such as the backpropagation algorithm, use this type of learning (Werbos,
1990; Rumelhart and McLelland, 1986; Rumelhart et al., 1986).

The incremental pattern mode of learning is concerned with learning
each data example separately and the data might exist only for a short
time. After observing each data example, the system makes changes in
its structure (the W parameters) to optimise the goal function J . Incre-
mental learning is the ability of an NN to learn new data without fully
destroying the patterns learned from old data and without the need to be
trained on either old or new data. According to Schaal and Atkeson (1998)
incremental learning is characterized by the following features.

• Input and output distributions of data are not known and these distri-
butions may change over time.

• The structure of the learning system W is updated incrementally.

Only limited memory is available so that data have to be discarded after
they have been used.

(b) Off-line versus online learning: In an off-line learning mode, a NN model
is trained on data and then implemented to operate in a real environment,
without changing its structure during operation. In an online learning
mode, the NN model learns from new data during its operation and once
used the data are no longer available.

A typical simulation scenario for online learning is when data examples
are drawn randomly from a problem space and fed into the system one by
one for training. Although there are chances of drawing the same examples
twice or several times, this is considered as a special case in contrast
to off-line learning when one example is presented to the system many
times as part of the training procedure. Methods for online learning in
NN are studied in Albus (1975), Fritzke (1995), and Saad (1999). In Saad
(1999), a review of some statistical methods for online learning, mainly
gradient descent methods applied to fixed-size connectionist structures, is
presented. Some other types of learning, such as incremental learning and
lifelong learning, are closely related to online learning.

Online learning, incremental learning, and lifelong learning are typical
adaptive learning methods. Adaptive learning aims at solving the well-
known stability/plasticity dilemma, which means that the system is stable
enough to retain patterns learned from previously observed data, while
being flexible enough to learn new patterns from new incoming data.

Feature Selection, Model Creation, and Model Validation 27

Adaptive learning is typical for many biological systems and is also useful
in engineering applications such as robotic systems and process control.
Significant progress in adaptive learning has been achieved due to the
adaptive resonance theory (ART; Carpenter and Grossberg (1987, 1990,
1991) and Carpenter et al. (1991)) and its various models, which include
unsupervised models (ART1, ART2, FuzzyART) and supervised versions
(ARTMAP, FuzzyARTMAP – FAM).

(c) Combined online and off-line learning: In this mode the system may work
for some of the time in an online mode, after which it switches to off-line
mode, etc. This is often used for optimisation purposes, where a small
‘window’ of data from the continuous input stream can be kept aside,
and the learning system, which works in an online mode, can be locally
or globally optimised through off-line learning on this window of data
through ‘window-based’ optimisation of the goal function J�W�.

4. Is the learning process lifelong?
(a) Single session learning: The learning process happens only once over the

whole set of available data (even though it may take many iterations during
training). After that the system is set in operation and never trained again.
This is the most common learning mode in many existing connectionist
methods and relates to the off-line, batch mode of training. But how can
we expect that once a system is trained on certain (limited) data, it will
always operate perfectly well in a future time, on any new data, regardless
of where they are located in the problem space?

(b) Lifelong learning is concerned with the ability of a system to learn from
continuously incoming data in a changing environment during its entire
existence. Growing, as well as pruning, may be involved in the lifelong
learning process, as the system needs to restrict its growth while always
maintaining a good learning and generalisation ability. Lifelong learning
relates to incremental, online learning modes, but requires more sophis-
ticated methods.

5. Are there desired output data and in what form are they available?
The availability of examples with desired output data (labels) that can
be used for comparison with what the learning system produces on its
outputs defines four types of learning.

(a) Unsupervised learning: There are no desired output data attached to the
examples z1� z2� z3� � � � . The data are considered as coming from an input
space Z only.

(b) Supervised learning: There are desired output data attached to the
examples z1� z2� z3� � � � . The data are considered as coming in (x� y) pairs
from both an input space X and an output space Y that collectively define
the problem space Z. The connectionist learning system associates data
from the input space X to data from the output space Y (see Fig. 1.9).

(c) Reinforcement learning: In this case there are no exact desired output
data, but some hints about the ‘goodness’ of the system reaction are
available. The system learns and adjusts its structural parameters from
these hints. In many robotic systems a robot learns from the feedback
from the environment, which may be used as, for example, a qualitative
indication of the correct movement of the robot.

28 Evolving Connectionist Systems

Problem Space Z

Input
Subspace

Output
Subspace

X

Y

data points
Error Feedback

Connectionist Model

Fig. 1.9 A supervised learning model maps the input subspace into the output subspace of the problem
space Z.

(d) Combined learning: This is the case when a connectionist system can
operate in more than one of the above learning modes.

6. Does learning include populations of individuals over generations?
(a) Individual development-based learning: A system is developing indepen-

dently and is not part of a population of individual systems over
generations.

(b) Evolutionary (population/generation based) learning: Here, learning is
concerned with the performance not only of an individual system, but of
a population of systems that improve their performance through genera-
tions (see Chapter 6). The best individual system is expected to emerge and
evolve from such populations. Evolutionary computation (EC) methods,
such as genetic algorithms (GA), have been widely used for optimising
ANN structures (Yao, 1993; Fogel et al., 1990; Watts and Kasabov, 1998).
They utilise ideas from Darwinism. Most of the evolutionary EC methods
developed thus far assume that the problem space is fixed, i.e. that the
evolution takes place within a predefined problem space and this space
does not change dynamically. Therefore these methods do not allow
for modelling real online adaptation. In addition they are very time-
consuming, which also prevents them from being used in real-world
applications.

7. Is the structure of the learning system of a fixed size, or it is evolving?
Here we refer again to the bias/variance dilemma (see, e.g. Carpenter and
Grossberg (1991) and Grossberg (1969, 1982)). For an NN structure the
dilemma states that if the structure is too small, the NN is biased to certain
patterns, and if the NN structure is too large there are too many variances,
which may result in overtraining, poor generalization, etc. In order to
avoid this problem, an NN structure should change dynamically during
the learning process, thus better representing the patterns in the data and
the changes in the environment.

(a) Fixed-size structure: This type of learning assumes that the size of the
structure S is fixed (e.g. number of neurons, number of connections), and

Feature Selection, Model Creation, and Model Validation 29

through learning the system changes some structural parameters (e.g. W ,
the values of connection weights). This is the case in many multilayer
perceptron ANNs trained with the backpropagation algorithm (Rosenblatt,
1962; Amari, 1967, 1990; Arbib, 1972, 1987, 1995, 2002; Werbos, 1990;
Hertz et al., 1991; Rumelhart et al., 1986).

(b) Dynamically changing structure: According to Heskes and Kappen (1993)
there are three different approaches to dynamically changing struc-
tures: constructivism, selectivism, and a hybrid approach. Connectionist
constructivism is about developing ANNs that have a simple initial
structure and grow during their operation through inserting new nodes
using evolving rules. This theory is supported by biological facts (see Saad
(1999)). The insertion can be controlled by either a similarity measure
of input vectors, by the output error measure, or by both, depending
on whether the system performs an unsupervised or supervised mode
of learning. A measure of difference between an input pattern and
already stored ones is used for deciding whether to insert new nodes in
the adaptive resonance theory models ART1 and ART2 (Carpenter and
Grossberg, 1987) for unsupervised learning. There are other methods that
insert nodes based on the evaluation of the local error. Such methods are
the growing cell structure and growing neural gas (Fritzke, 1995). Other
methods insert nodes based on a global error to evaluate the perfor-
mance of the whole NN. One such method is the cascade correlation
method (Fahlman and Lebiere, 1990). Methods that use both similarity and
output error for node insertion are used in Fuzzy ARTMAP (Carpenter
et al., 1991) and also in EFuNN (Chapter 3). Connectionist selectivism
is concerned with pruning unnecessary connections in an NN that starts
its learning with many, in most cases redundant, connections (Rummery
and Niranjan, 1994; Sankar and Mammone, 1993). Pruning connections
that do not contribute to the performance of the system can be done
by using several methods: optimal brain damage (Le Cun et al., 1990),
optimal brain surgeon (Hassibi and Stork, 1992), and structural learning
with forgetting (Ishikawa, 1996).

8. How does structural modification in the learning system partition the problem
space?

When a machine learning (e.g. connectionist) model is created, in either
a supervised or an unsupervised mode, the nodes and the connections
partition the problem space Z into segments. Each segment of the input
subspace is mapped onto a segment from the output subspace in the case
of supervised learning. The partitioning in the input subspace imposed by
the model can be one of the following types.

(a) Global partitioning (global learning): Learning causes global partitioning
of the space. Usually the space is partitioned by hyperplanes that are
modified either after every example is presented (in the case of incremental
learning), or after all of them being presented together.
Through the gradient descent learning algorithm, for example, the problem
space is partitioned globally. This is one of the reasons why global
learning in multilayer perceptrons suffers from the catastrophic forgetting
phenomenon (Robins, 1996; Miller et al., 1996). Catastrophic forgetting

30 Evolving Connectionist Systems

(also called unlearning) is the inability of the system to learn new patterns
without forgetting previously learned patterns. Methods to deal with this
problem include rehearsing the NN on a selection of past data, or on
new data points generated from the problem space (Robins, 1996). Other
techniques that use global partitioning are support vector machines (SVM;
Vapnik (1998)). SVM optimise the positioning of the hyperplanes to
achieve maximum distance from all data items on both sides of the plane
(Kecman, 2001).

(b) Local partitioning (local learning): In the case of local learning, structural
modifications of the system affect the partitioning of only a small part of
the space from where the current data example is drawn. Examples are
given in Figs. 1.10a and b, where the space is partitioned by circles and
squares in a two-dimensional space. Each circle or square is the subspace
defined by a neuron. The activation of each neuron is defined by local
functions imposed on its subspace. Kernels, as shown in Fig. 1.10a, are
examples of such local functions. Other examples of local partitioning are
shown in Figs. 1.11a and b, where the space is partitioned by hypercubes
and fractals in a 3D space.

Before creating a model it is important to choose which type of parti-
tioning would be more suitable for the task in hand. In the ECOS presented
later in this book, the partitioning is local. Local partitioning is easier to
adapt in an online mode, faster to calculate, and does not cause catas-
trophic forgetting.

9. What knowledge representation is facilitated in the learning system?
It is a well-known fact that one of the most important characteristics
of the brain is that it can retain and build knowledge. However, it is
not yet known exactly how the activities of the neurons in the brain are
transferred into knowledge. For the purpose of the discussion in this book,
knowledge can be defined as the information learned by a system such
that the system and humans can interpret it to obtain new facts and new
knowledge. Traditional neural networks and connectionist systems have
been known as poor facilitators of representing and processing knowledge,
despite some early investigations (Hinton, 1987, 1990).

However, some of the issues of knowledge representation in connectionist
systems have already been addressed in the so-called knowledge-based
neural net- works (KBNN) (Towell and Shavlik, 1993, 1994; Cloete and
Zurada, 2000). KBNN are neural networks that are prestructured in a way
that allows for data and knowledge manipulation, which includes learning,
knowledge insertion, knowledge extraction, adaptation, and reasoning.
KBNN have been developed either as a combination of symbolic AI systems
and NN (Towell et al., 1990), or as a combina- tion of fuzzy logic systems
and NN (Yamakawa and Tomoda, 1989; Yamakawa et al., 1992, 1993;
Furuhashi et al., 1993, 1994; Hauptmann and Heesche, 1995; Jang, 1993;
Kasabov, 1996). Rule insertion and rule extraction operations are examples
of how a KBNN can accommodate existing knowledge along with data,
and how it can ‘explain’ what it has learned. There are different methods
for rule extraction that are applied to practical problems (Hayashi, 1991;
Mitra and Hayashi, 2000; Duch et al., 1998; Kasabov, 1996, 1998c, 2001c).

Feature Selection, Model Creation, and Model Validation 31

Squares

(b)

x

x

x

Data points

Kernels

Circles

(a)

Fig. 1.10 Local partitioning of the problem space using different types of kernels: (a) hyperspheres and Gaussian
functions defined on them; (b) squares, where a simple function can be defined on them (e.g.: yes, the data
vector belongs to the square, and no, it does not belong). Local partitioning can be used for local learning.

Generally speaking, learning systems can be distinguished based on the
type of knowledge they represent.

(a) No explicit knowledge representation is facilitated in the system: An
example for such a connectionist system is the traditional multi-
layer perceptron network trained with the backpropagation algorithm

32 Evolving Connectionist Systems

(a)

3D Hypercubes

(b)

3D Fractals

Fig. 1.11 Different types of local partitioning of the problem space illustrated in a 3D space: (a) using
hypercubes; (b) using fractals.

(Rosenblatt, 1962; Amari, 1967; Arbib, 1972, 1987, 1995, 2002; Werbos,
1990; Hertz et al., 1991; Rumelhart et al., 1986).

(b) Memory-based knowledge: The system retains examples, patterns, proto-
types, and cases, for example, instance-based learning (Aha et al.,
1991), case-based reasoning systems (Mitchell, 1997), and exemplar-based
reasoning systems (Salzberg, 1990).

(c) Statistical knowledge: The system captures conditional probabilities,
probability distribution, clusters, correlation, principal components, and
other statistical parameters.

Feature Selection, Model Creation, and Model Validation 33

(d) Analytical knowledge: The system learns an analytical function f : X –> Y ,
that represents the mapping of the input space X into the output
space Y . Regression techniques and kernel regressions in particular, are
well established.

(e) Symbolic knowledge: Through learning, the system associates information
with predefined symbols. Different types of symbolic knowledge can be
facilitated in a learning system as further discussed below.

(f) Combined knowledge: The system facilitates learning of several types of
knowledge.

(g) Meta-knowledge: The system learns a hierarchical level of knowledge
representation where meta-knowledge is also learned, for example, which
piece of knowledge is applicable and when.

(h) ‘Consciousness’ (the system knows about itself): The system becomes
‘aware’ of what it is, what it can do, and where its position is among the
rest of the systems in the problem space.

(i) ‘Creativity’ (e.g. generating new knowledge): An ultimate type of knowledge
would be such knowledge that allows the system to act creatively, to create
scenarios, and possibly to reproduce itself, for example, a system that
generates other systems (programs) improves in time based on its perfor-
mance in the past.
Without the ability of a system to represent knowledge, it cannot capture
knowledge from data, it cannot capture the evolving rules of the process
that the system is modelling or controlling, and it cannot help much to
better understand the processes. In this book we indeed take a knowledge-
engineering approach to modelling and building evolving intelligent
systems (EIS), where knowledge representation, knowledge extraction, and
knowledge refinement in an evolving structure are the focus of our study
along with the issues of adaptive learning.

10. If symbolic knowledge is represented in the system, of what type is it?
If we can represent the knowledge learned in a learning system as symbols,
different types of symbolic knowledge can be distinguished.

(a) Propositional rules
(b) First-order logic rules
(c) Fuzzy rules
(d) Semantic maps
(e) Schemata
(f) Meta-rules
(g) Finite automata
(h) Higher-order logic

11. If the system’s knowledge can be represented as fuzzy rules, what type of fuzzy
rules are they?

Different types of fuzzy rules can be used, for example:
(a) Zadeh–Mamdani fuzzy rules (Zadeh, 1965; Mamdani, 1977).
(b) Takagi–Sugeno fuzzy rules (Takagi and Sugeno, 1985).
(c) Other types of fuzzy rules, for example, type-2 fuzzy rules (for a compre-

hensive reading, see Mendel (2001)).
The above types of rules are explained in Chapter 5. Generally speaking,
different types of knowledge can be learned from a process or from an

34 Evolving Connectionist Systems

object in different ways, all of them involving human participation. Some
of these ways are shown in Fig. 1.12. They include direct learning by
humans, simple problem representation as graphs, analytical formulas,
using NN for learning and rule extraction, and so on. All these forms can
be viewed as alternative and possibly equivalent forms in terms of final
results obtained after a reasoning mechanism is applied on them. Elabo-
rating analytical knowledge in a changing environment is a very difficult
process involving changing parameters and formulas with the change of
the data. If evolving processes are to be learned in a system and also
understood by humans, neural networks that are trained in an incremental
mode and their structure interpreted as knowledge are the most promising
models at present. This is the approach that is taken and developed in
this book.

12. Is learning active?
Humans and animals are selective in terms of processing only important
information. They are searching actively for new information (Freeman,
2000; J.G. Taylor, 1999). Similarly, we can have two types of learning in
an intelligent system:

(a) Active learning: In terms of data selection, filtering, and searching for
relevant data.

(b) Passive learning: The system accepts all incoming data.

Fig. 1.12 Different learning and knowledge representation techniques applied to modelling a process or an
object, including: off-line versus online learning; connectionist versus analytical (e.g. regression) learning; learning
in a model versus learning in the brain.

Feature Selection, Model Creation, and Model Validation 35

Both approaches are applied in the different methods and techniques of evolving
connections systems presented in Chapters 2 to 7.

1.4 Probability and Information Measure. Bayesian
Classifiers, Hidden Markov Models. Multiple
Linear Regression

Probability Characteristics of Events

Many learning methods are based on probability of events that are learned from
data, and then used to predict new events. The formal theory of probability relies
on the following three axioms, where p�E� is the probability of an event E to
happen and p�¬E� is the probability of an event not happening. E1, E2,…,Ek is a
set of mutually exclusive events that form an universe U :

Box 1.1. Probability axioms

Axiom 1. 0<= p�E� <= 1.
Axiom 2. �p�Ei� = 1, E1∪E2∪ � � �∪Ek = U�U- problem space.
Corollary: p�E�+p�¬E� = 1.
Axiom 3. p�E1 OR E2� = p�E1�+p�E2�, where E1 and E2 are mutually exclusive
events.

Probabilities are defined as:

• Theoretical – some rules are used to evaluate a probability of an event.
• Experimental – probabilities are learned from data and experiments: throw dice

1000 times and measure how many times the event ‘getting 6’ has happened.
• Subjective – probabilities are based on common-sense human knowledge, such

as defining that the probability of getting ‘6’ after throwing dice is 1/6th , without
really throwing it many times.

Information and Entropy Characteristics of Events

A random variable x is characterised at any moment of time by its uncertainty
in terms of what value this variable will take in the next moment, its entropy.
A measure of uncertainty h�xi� can be associated with each random value xi of a
random variable x, and the total uncertainty H�x�, called entropy, measures our
lack of knowledge, the seeming disorder in the space of the variable x:

H�X� = �i=1�����npi � h�xi� (1.6)

36 Evolving Connectionist Systems

where pi is the probability of the variable x taking the value of xi.
The following axioms for the entropy H�x� apply.

• Monotonicity: If n > n′ are the number of events (values) that a variable x
can take, then Hn�x� > Hn′�x�, so the more values x can take, the greater the
entropy.

• Additivity: If x and y are independent random variables, then the joint entropy
H�x� y�, meaning H�x AND y�, is equal to the sum of H�x� and H�y�.

The following log function satisfies the above two axioms.

h�xi� = log�1/pi� (1.7)

If the log has a basis of 2, the uncertainty is measured in [bits], and if it is the
natural logarithm ln, then the uncertainty is measured in [nats].

H�X� = �i=1�����n �pi � h�xi�� = −c��i=1�����n �pi � log pi� (1.8)

where c is a constant.
Based on the Shannon measure of uncertainty, entropy, we can calculate an

overall probability for a successful prediction for all states of a random variable
x, or the predictability of the variable as a whole:

P�x� = 2−H�x� (1.9)

The max entropy is calculated when all the n values of the random variable x
are equiprobable; i.e. they have the same probability 1/n, a uniform probability
distribution:

H�X� = −�i=1�����n pi � log pi <= log n (1.10)

Example
Let us assume that it is known that a stock market crashes (goes to an extremely

low value that causes many people and companies to lose their shares and assets
and to go bankrupt) every six years. What are the uncertainty and the predictability
of the crash in terms of determining the year of crash, if: (a) the last crash
happened two years ago? (b) The same as in (a), plus we know for sure that
there will be no crash in the current year, nor in the last year of the six-year
period.

The solution will be:

(a) The possible years for a crash are the current one (year 3) and also years 4, 5,
and 6. The random variable x which has the meaning of ‘annual crash of the
stock market’ can take any of the values 3, 4, 5, and 6, therefore n = 4 and the
maximum entropy is H�x� = log2 4 = 2. The predictability is P�x� = 2−2 = 1/4.

Feature Selection, Model Creation, and Model Validation 37

(b) The possible values for the variable x are reduced to 2 (years 4 and 5) as we
have some extra knowledge of the stock market. In this case the maximum
entropy will be 1 and the predictability will be 1/2.

Joint entropy between two random variables x and y (e.g. an input and an output
variable in a system) is defined by the formulas:

H�x� y� = −�i=1�����n p�xi AND yj�� log p�xi AND yj� (1.11)

H�x� y� <= H�x�+H�y� (1.12)

Conditional entropy, that is, measuring the uncertainty of a variable y (output
variable) after observing the value of a variable x (input variable), is defined as
follows.

H�y�x� = −�i=1�����n p�xi� yj� � log p�yj�xi� (1.13)

H�y�x� <= H�y� (1.14)

Entropy can be used as a measure of the information associated with a random
variable x, its uncertainty, and its predictability.The mutual information between
two random variables, also simply called information, can be measured as
follows.

I�y� x� = H�y�−H�y�x� (1.15)

The process of online information entropy evaluation is important as in a time
series of events, after each event has happened, the entropy changes and its value
needs to be re-evaluated.

Models based on probability are:

Bayesian classifiers
Hidden Markov models

A Bayesian classifier uses a conditional probability estimate to predict a class for new
data. The following formula, which represents the conditional probability between
two events C and A, is known as Bayes’ formula (Thomas Bayes, 18th century):

p�A�C� = p�C�A��p�A�/p�C� (1.16)

It follows from the equations,

p�A AND C� = p�C AND A� = p�A�C�p�C� = p�C�A�p�A� (1.17)

Example
Evaluating the probability p�A�C� of a patient having a flu (event A) based

on the evidence that the patient has a high temperature (fact C). In order to
accomplish this, we need the prior probability p�C� of all ill patients having a high
temperature, the prior probability of all people suffering of a flu at the time p�A�,

38 Evolving Connectionist Systems

and the conditional probability p�C�A� of patients who, if having a flu A, have a
high temperature C.

Problems with the Bayesian learning models relate to unknown prior probabil-
ities and the requirement of a large amount of data for more accurate probability
calculation. This is especially true for a chain of events A�B�C� � � �, where proba-
bilities p�C�A�B�� � � �, etc. need to be evaluated. The latter problem is addressed in
techniques called hidden Markov models (HMM).

HMM is a technique for modelling the temporal structure of a time series signal,
or of a sequence of events (Rabiner, 1989). It is a probabilistic pattern-matching
approach that models a sequence of patterns as the output of a random process.
The HMM consists of an underlying Markov chain.

P�q�t +1��q�t�� q�t −1�� q�t −2�� � � � � q�t −n�� ≈ P�q�t +1��q�t�� (1.18)

where q�t� is state q sampled at a time t.
Example

Weather forecast problem as a Markov chain of events. Given today is sunny
(S), what is the probability that the next following five days are S, Cloudy (C�, or
Rainy (R�? The answer can be derived using Table 1.1a.

HMM can be used not only to model time series of events, but a sequence of
events in space. An example is modelling DNA sequences of four basic molecules:
A, C, T, G (see Chapter 8) based on a probability matrix of having all 16 pairs of
these molecules derived from a large enough segment of DNA (see Table 1.1b).
Building a HMM from a DNA sequence and using this HMM to predict segments

Table 1.1a Representation of conditional probabilities for a HMM for weather
forecast of tomorrow’s weather from the weather today. Using this probability
matrix, we can build a HMM for prediction of the weather several days ahead,
starting from any day named ‘Today’.

P (Tomorrow � Today) Table

Tomorrow

(S) (C) (R)
Sunny(S) .7 .2 .1

Today Cloudy(C) .05 .8 .15
Rainy(R) .15 .25 .6

Table 1.1b Probability for a Pair of Neighbouring Molecular Nucleotides to Appear
in a DNA Sequence of a Species.

A C T G

A (Adenine) 0.3 0.5 0.1 0.1
C (Cytosine) 0.1 0.1 0.2 0.6
T (Thymine) 0.3 0.1 0.2 0.4
G (Guanine) 0.25 0.15 0.3 0.3

Feature Selection, Model Creation, and Model Validation 39

of a DNA that will be translated into proteins is the main purpose of the software
system GeneMark (Lukashin and Borodovski, 1998).

Multiple Linear Regression Methods (MLR)

The purpose of multiple linear regression is to establish a quantitative relationship
between a group of p predictor variables (X) and a response y.

This relationship is useful for:

• Understanding which predictors have the greatest effect
• Knowing the direction of the effect (i.e. increasing x increases/decreases y).
• Using the model to predict future values of the response when only the predictors

are currently known

A linear model takes its common form of:

Y = X A+b (1.19)

where p is the number of the predictor variables; y is an n-by-1 vector of obser-
vations, X is an n-by-p matrix of regressors, A is a p-by-1 vector of parameters,
and b is an n-by-1 vector of random disturbances. The solution to the problem is
a vector A′ which estimates the unknown vector of parameters. The least squares
solution is used, so that the linear regression formula approximates the data with
the least root mean square error (RMSE) as follows,

RMSE = SQRT�SUMi=1�2�����n��yi −y′
i�

2�/n� (1.20)

where yi is the desired value from the dataset corresponding to an input vector xi,
y′

i is the value obtained through the regression formula for the same input vector
xi, and n is the number of the samples (vectors) in the dataset.

Another error measure is also used to evaluate the performance of the regression
model – a nondimensional error index (NDEI) – the RMSE divided to the standard
deviation of the dataset:

NDEI = RMSE/Std (1.21)

Example 1
Linear regression modelling of the gas furnace benchmark data. Fig. 1.13 shows

the regression formula that approximates the data, the desired versus the approx-
imated by the formula values of the time series, and the two error measures, root
mean square and the nondimensional error index.
Example 2

The following linear regression approximates the Mackey–Glass benchmark data
(data are normalised).

Y = 0�93−0�3 x1−0�01 x2−0�56 x3+0�86 x4 (1.22)

40 Evolving Connectionist Systems

Fig. 1.13 Linear regression modelling of the gas-furnace benchmark data. The figure shows: the regression
formula that approximates the data; the desired versus the approximated by the formula values of the time
series; and the two error measures: root mean square error and the nondimensional error index.

Example 3
The following multiple linear regression model (three linear regressions)

discriminates the samples among the three classes of the Iris data (data are
normalised).

Class 1 (Setosa) = 0�12+0�06 x1+0�24 x2−0�22 x3−0�06 x4
Class 2 (Versicolor) = 1�5−0�02 x1−0�44 x2+0�22 x3−0�48 x4
Class 3 (Virginica) = −0�68−0�04 x1+0�2 x2+0�004x3+0�55 x4

1.5 Support Vector Machines (SVM)

The support vector machine was first proposed by Vapnik and his group at AT&T
Bell laboratories (Vapnik, 1998). For a typical learning task defined as probability
estimation of output values y depending on input vectors

⇀
x:

P�
⇀
x� y� = P�y�⇀

x�P�
⇀
x� (1.23)

an inductive SVM classifier aims to build a decision function

fL

⇀
x → �−1�+1	 (1.24)

Feature Selection, Model Creation, and Model Validation 41

based on a training set,

fL = L�Strain�

where
 Strain = �
⇀
x1� y1�� �

⇀
x2� y2�� � � � � �

⇀
xn� yn�

(1.25)

In the SVM theory, the computation of fL can be traced back to the classical
structural risk minimization approach, which determines the classification decision
function by minimizing the empirical risk, as

R = 1

l

N∑

i=1

∣
∣
∣f�

⇀
xi�−yi

∣
∣
∣ (1.26)

where N and f represent the size of the set of examples and the classification
decision function, respectively; l is a constant for normalization. For SVM, the
primary concern is determining an optimal separating hyperplane that gives a low
generalization error. Usually, the classification decision function in the linearly
separable problem is represented by

f⇀
w�b

= sign�
⇀
w · ⇀

x +b� (1.27)

In SVM, this optimal separating hyperplane is determined by giving the largest
margin of separation between vectors that belong to different classes. It bisects
the shortest line between the convex hulls of the two classes, which is required to
satisfy the following constrained minimization conditions.

Minimize

1

2
⇀
w

T ⇀
w

Subject to
 yi�
⇀
w · ⇀

x +b� ≥ 1� (1.28)

For the linearly nonseparable case, the minimization problem needs to be modified
to allow misclassified data points. This modification results in a soft margin
classifier that allows but penalizes errors, by introducing a new set of variables
�l

i=1 as the measurement of violation of the constraints (Fig. 1.14a):

Minimize

1

2
⇀
w

T ⇀
w +C�

∑L

i=1
�i�

k

Subject to
 yi�
⇀
w ·��

⇀
xi�+b� ≥ 1−�i� (1.29)

where C and k are used to weight the penalizing variables �l
i=1, and ��·� is a

nonlinear function that maps the input space into a higher-dimensional space. In
order to solve the above equation, we need to construct a set of functions and
implement the classical risk minimization on this set. Here, a Lagrangian method
is used to solve the above problem. Then, the above equation can be written as

Minimize
 F��� = � ·1− 1

2
� ·D ·�

Subject to
 � ·y = 0�� ≤ C�� > 0� (1.30)

42 Evolving Connectionist Systems

(a)

SVM hyper plane

(b)

T = 1

(c)

T = 2 T = 3 T = 4 T = 5

Fig. 1.14 (a) A SVM classifier builds a hyperplane to separate samples from different classes in a higher-
dimensional space; the new vectors on the border are called support vectors; (b) a SVM tree, where each node
is a SVM; (c) an evolving SVM tree evolves new nodes incrementally (from S. Pang et al. (2005)).

Feature Selection, Model Creation, and Model Validation 43

where � = ��1� · · · � �l�, D = yiyj
⇀
xi · ⇀

xj for binary classification and the decision
function can be rewritten as

f�x� = sign�
l∑

i=1

yi�
∗
i �

⇀
x ·��

⇀
xi�+b∗� (1.31)

For more details, the reader is referred to Vapniak (1998) and Cherkassky and
Mulier (1998).

Transductive SVM (TSVM)

In contrast to the inductive SVM learning method described above, transductive
SVM (TSVM) learning includes knowledge of test set Stest in the training procedure,
thus the above learning function of inductive SVM can be reformulated as (Kasabov
and Pang, 2004)

fL = L�Strain� Stest��

where
 Strain = �
⇀
x

∗
1 � y

∗
1�� �

⇀
x

∗
2 � y

∗
2�� � � � � �

⇀
x

∗
n� y

∗
n�

(1.32)

Therefore, in a linearly separable data case, to find a labelling y
∗
1 � y

∗
2 � · · · � y

∗
n of the

test data, the hyper plane <
⇀
w�b > should separate both training and test data

with maximum margin:

Minimize Over�y
∗
1 � y

∗
2 � · · · � y

∗
3 �

⇀
w� b�

1

2
⇀
w

T ⇀
w

Subject to
 yi�
⇀
w · ⇀

xi +b� ≥ 1

y
∗
j �

⇀
w · ⇀

x
∗
j +b� ≥ 1�

(1.33)

To be able to handle nonseparable data, similar to the way in the above inductive
SVM, the learning process of transductive SVM can be formulated as the following
optimization problem.

Minimize Over

�y∗
1 � y∗

2 � · · · � y∗
3 �

⇀
w� b� �1� · · · � �n� �

∗
1 � · · ·�∗

k �

1

2
⇀
w

T ⇀
w +C�

L∑

i=1

�i�
k +C�

K∑

j=
�∗

j �k (1.34)

Subject to
 yi�
⇀
w ·��

⇀
xi�+b� ≥ 1−�i

y
∗
j �

⇀
w ·��

⇀
x

∗
j �+b� ≥ 1−�∗

j

where C∗ is the effect factor of the query examples, and C∗�∗
i is the effect term of

the ith query example in the above objective function.

44 Evolving Connectionist Systems

SVM Tree (SVMT)

The SVM tree is constructed by a divide-and-conquer approach using a binary
class-specific clustering and SVM classification technique; see, for example,
Fig. 1.14b (Pang and Kasabov, 2004; Pang et al., 2006).

Basically, we perform two procedures at each node in the above tree gener-
ation. First, the class-specific clustering performs a rough classification because
it splits the data into two disjoint subsets based on the global features. Next, the
SVM classifier performs a ‘fine’ classification based on training supported by the
previous separation result.

Figure 1.14b is an example of the SVM tree which is derived from the above
SVM tree construction. As mentioned, the SVM test starts at the root node 1. If
the test T1 �x� = +1 is observed, the test T2 �x� is performed. If the condition
T1 �x� = +1 and T2 �x� = −1 is observed, then the input data x are assigned to
class a, and so forth.

SVM trees can evolve new nodes, new local SVM to accommodate new data
from an input data stream. An example of an evolving SVM tree is shown in
Fig.1.14c (Pang et al., 2006).

1.6 Inductive Versus Transductive Learning and Reasoning.
Global, Local, and ‘Personalised’ Modelling

1.6.1 Inductive Global and Local Modelling

Most learning models and systems in artificial intelligence developed and imple-
mented thus far are based on inductive inference methods, where a model (a
function) is derived from data representing the problem space and this model
is further applied to new data (Fig. 1.15a). The model is usually created without
taking into account any information about a particular new data vector (test data).
An error is measured to estimate how well the new data fit into the model.

The models are in most cases global models, covering the whole problem space.
Such models are, for example, regression functions, some NN models, and also
some SVM models, depending on the kernel function they use. These models are
difficult to update on new data without using old data previously used to derive
the models. Creating a global model (function) that would be valid for the whole
problem space is a difficult task, and in most cases it is not necessary to solve.

Some global models may consist of many local models that collectively cover
the whole space and can be adjusted incrementally on new data. The output for
a new vector is calculated based on the activation of one or several neighbouring
local models. Such systems are the evolving connectionist systems (ECOS) – for
example, EFuNN and DENFIS – presented in Chapters 3 and 5, respectively.

The inductive learning and inference approach is useful when a global model
(‘the big picture’) of the problem is needed even in its very approximate form.
In some models (e.g. ECOS) it is possible to apply incremental online learning to
adjust this model on new data and trace its evolution.

Feature Selection, Model Creation, and Model Validation 45

1.6.2 Transductive Modelling. WKNN

In contrast to the inductive learning and inference methods, transductive inference
methods estimate the value of a potential model (function) only in a single point
of the space (the new data vector) utilising additional information related to this
point (Vapnik, 1998). This approach seems to be more appropriate for clinical and
medical applications of learning systems, where the focus is not on the model,
but on the individual patient. Each individual data vector (e.g. a patient in the
medical area, a future time moment for predicting a time series, or a target day
for predicting a stock index) may need an individual local model that best fits
the new data, rather than a global model. In the latter case the new data are
matched into a model without taking into account any specific information about
these data.

Transductive inference is concerned with the estimation of a function in a
single point of the space only. For every new input vector xi that needs to be
processed for a prognostic task, the Ni nearest neighbours, which form a subdata
set Di, are derived from an existing dataset D and, if necessary, generated from an
existing model M. A new model Mi is dynamically created from these samples to
approximate the function in the point xi. The system is then used to calculate the
output value yi for this input vector xi (Fig. 1.15b,c).

A very simple transductive inference method, the k-nearest neighbour method
(K-NN) is briefly introduced here. In the K-NN method, the output value yi

for a new vector xi is calculated as the average of the output values of the k
nearest samples from the dataset Di. In the weighted K-NN method (WKNN) the
output yi is calculated based on the distance of the Ni nearest neighbour samples
to xi:

yi =

Ni∑

j=1
wjyj

Ni∑

j=1
wj

(1.35)

where yj is the output value for the sample xj from Di and wj are their weights
measured as

wj = max�d�− �dj −min�d��

max�d�
(1.36)

The vector d = �d1� d2� � � �� dNi� is defined as the distances between the new input
vector xi and Ni nearest neighbours (xj� yj) for j = 1 to Ni; max(d) and min(d) are
the maximum and minimum values in d, respectively. The weights wj have the
values between min(d)/max(d) and 1; the sample with the minimum distance to
the new input vector has the weight value of 1, and it has the value min(d)/max(d)
in case of maximum distance.

46 Evolving Connectionist Systems

(a)
Data set D

for training
Training a
model M

New input vector xi

New input vector xi

Recall M for
any new data

xi

Output yi

(b)

Model Mold

A new model
M generated
for the input

vector xi

Data Dj selected from D in the
vicinity of the input vector xi

Data Do , j generated from Mold
in the vicinity of the input vector xi

Output yi
Data set D
for training

(c)

Fig. 1.15 (a) Inductive learning: given a training set, construct a model M that will accurately represent the
examples in the set; recall the model M on a new example xi to evaluate the output yi. (b) Transductive
learning: for every new input vector xi, a new model Mi is dynamically created from the available samples to
approximate the function in the locality of the point xi. (c) A transductive model is created with a subtraining
dataset of neighbouring samples for each new input vector. This is shown here as two vectors x 1 and x 2.

Distance is usually measured as Euclidean distance:

�x − y� =
[

1

P

P∑

j=1

∣
∣xj −yj

∣
∣2
] 1

2

(1.37)

Feature Selection, Model Creation, and Model Validation 47

Distance can be also measured as Pearson correlation distance, Hamming distance,
cosine distance, etc. (Cherkassky and Mulier, 1998).

1.6.3 Weighted Examples – Weighted Variables K-NN: WWKNN

In the WKNN the calculated output for a new input vector depends not only on
the number of its neighbouring vectors and their output values (class labels), as
in the KNN method, but on the distance between these vectors and the new vector
which is represented as a weight vector (W). It is assumed that all v input variables
are used and the distance is measured in a v-dimensional Euclidean space with all
variables having the same impact on the output variable.

But when the variables are ranked in terms of their discriminative power of class
samples over the whole v-dimensional space, we can see that different variables
have different importance to separate samples from different classes, therefore a
different impact on the performance of a classification model. If we measure the
discriminative power of the same variables for a subspace (local space) of the
problem space, the variables may have a different ranking.

Using the ranking of the variables in terms of a discriminative power within
the neighborhood of K vectors, when calculating the output for the new input
vector, is the main idea behind the WWKNN algorithm (Kasabov, 2007b), which
includes one more weight vector to weigh the importance of the variables. The
distance dj between a new vector xi and a neighboring one xj in 1.36 is calculated
now as:

dj = sqr�suml=1 to v�ci�l�xi�l − xj�l��
2� (1.38)

where ci�l is the coefficient weighing variable xl in a neighbourhood of xi. It can be
calculated using a signal-to-noise ratio procedure that ranks each variable across
all vectors in the neighbourhood set Di of Ni vectors:

Ci = �ci�1� ci�2� � � �� ci�v� (1.39)

ci�l = Sl/sum�Sl� for l = 1� 2� � � �� v

where

Sl = abs�M
�class 1�
l −M

�class 2�
l �/�Std�class 1�

l +Std�class2�
l � (1.40)

Here M
�class 1�
l and Std�class 1�

l are, respectively, the mean value and the standard
deviation of variable xl for all vectors in Di that belong to class 1.

The new distance measure, that weighs all variables according to their impor-
tance as discriminating factors in the neighbourhood area Di, is the new element
in the WWKNN algorithm when compared to the WKNN.

Using the WWKNN algorithm, a ‘personalised’ profile of the variable impor-
tance can be derived for any new input vector that represents a new piece of
‘personalised’ knowledge.

48 Evolving Connectionist Systems

Weighting variables in personalised models is used in the TWNFI models (trans-
ductive weighted neuro-fuzzy inference) in Song and Kasabov (2005, 2006).

There are several open problems related to transductive learning and reasoning,
e.g. how to choose the optimal number of vectors in a neighbourhood and the
optimal number of variables, which for different new vectors may be different
(Mohan and Kasabov, 2005).

1.7 Model Validation

When a machine learning model is built based on a dataset S, it needs to be
validated in terms of its generalisation ability to produce good results on new,
unseen data samples. There are several ways to validate a model:

1) Train-test split of data: Splitting the dataset S into two sets: Str for training,
and Sts for testing the model.

2) K-fold cross validation (e.g. 3, 5, 10): in this case the dataset S is split randomly
into k subsets S1,S2,� � �� Sk and i = 1� 2� � � �� k times a model Mi is created on the
dataset S–Si and tested on the set Si; the mean accuracy across all k experiments
is calculated.

3) Leave-one-out cross-validation (a partial case of the above method when the
dataset S is split N times; in each subset there is only one sample).

What concerns the whole task of feature selection, model creation, and model
validation, the above methods can be applied in two different ways:

1) A ‘biased’ way – features are selected from the whole set S using a filtering-based
method, and then a model is created and validated on the selected features.

2) An ‘unbiased’ way – for every data subset Si in a cross-validation procedure,
first features Fi are selected from the set S–Si (using some of the above-discussed
methods, e.g. SNR) and then a model is created based on the feature set Fi;
the model Mi is validated on Si using features Fi. The leave-one-version of this
procedure is outlined in Box 1.2.

Box 1.2. Leave-one-out cross validation procedure

For i :=1 to N do
Take out sample Si from the data set S
Use the rest (S–Si) samples for feature selection Fi (optional)
Train a model Mi on S–Si using features Fi
Test the model Mi on the left-out-sample Si, evaluate error Ei
end
Evaluate the overall mean error
Evaluate the features used, their frequency of selection in the iterations.
Train a final model M on all data and on the most frequently selected features

Feature Selection, Model Creation, and Model Validation 49

Example
The unbiased leave-one-out procedure is illustrated on another benchmark

dataset that is used further in the book, the leukaemia classification problem
of AML/ALL classes (Golub et al., 1999). The dataset consists of 38 samples for
training a model and 34 test samples, each having 7129 variables representing the
expression of genes in two classes each of the samples from the class of AML and
class of ALL leukaemia types.

Figure 1.16a shows the result of the unbiased feature selection and model
validation procedure, where only the top four genes are selected on each of the
38 runs of the procedure and a k-NN model is used, k = 3. The overall accuracy
is above 92% and the top selected four genes are shown in the diagram with their
gene numbers.

The selected-above top four genes are used to build a (final) MLR model and to
test it on the test data of 34 samples using the same four variables. The results, in
the form of a confusion table, are shown in Fig. 1.16b. The coefficients of each of
the regression formulas (shown in a box) represent the participation of each of the
variables in terms of positive or negative and in terms of importance. This is important
knowledge contained in the MLR model that needs to be further analysed.

A transductive modelling approach can be applied when for every vector from
the test data, the closest K samples are selected from the training data using the
already-selected four genes and an individual MLR model is created for this sample
after which it can be used to test the model.

1.8 Exercise

Specification:

1) Select a classification or a prediction problem and a data set for it (e.g. from
http://www.kedri.info, or from the repository of machine learning databases.:
http://www.ics.uci.edu/∼mlearn/MLRepository.html UC Irvine).

2) Select features using some of the methods from this chapter (e.g. SNR, t-test).
3) Create a global statistical model using MLR through inductive learning.
4) Validate the model and evaluate its accuracy in a leave-one-out cross-validation

mode.
5) Create individual models through transductive learning and evaluate their

average accuracy.
6) Answer the following questions.

Q1. Which of the models is adaptive to new data?
Q2. What knowledge can be learned from the models?

1.9 Summary and Open Problems

This chapter introduces the basic concepts in CI modelling and some benchmark
datasets that are used in the rest of the chapters.

50 Evolving Connectionist Systems

(a)

(b)

Fig. 1.16 (a) The result of an unbiased feature selection and model validation procedure, where only the top
four genes are selected at each of the 38 runs of the procedure using the SNR method to rank the variables
and a multiple linear regression (MLR) model for classification. The overall accuracy is above 92% and the top
selected four genes are shown in the diagram with their gene numbers. (b) The four genes selected in (a –
top) are used to build the final inductive MLR model and to test it on the test data of 32 samples using the
same four variables. The results are shown as a confusion table (a proprietary software is used, SIFTWARE,
www.peblnz.com). See www.kedri.info for colour figures.

Feature Selection, Model Creation, and Model Validation 51

This chapter also raises some open questions, such as:

How do we identify the problem space and the dimensionality in which a process
is evolving having only a limited data collected?
Thus far, Euclidean space has predominantly been used, but is it appropriate to
use it for all cases?
Most of the machine learning models use time as a linear variable, but is that
the only way to present it?
How do we define the best model for the purpose of modelling an evolving
process?
Prediction modelling in an open problem space: how is it verified and evaluated?
In an EIS it may be important how fast the ‘intelligence’ emerges within a
learning system and within a population of such systems. How do we make this
process faster for both machines and humans?
Can a system become faster and more efficient than humans in acquiring intel-
ligence, e.g. in learning multiple languages?

The rest of the chapters in this part present evolving connectionist methods
for incremental, adaptive, knowledge-based learning. The methods are illustrated
using several benchmark datasets, some of them presented in this chapter. These
methods are applied to real-world problems from life sciences and engineering in
Part II of the book. All these applications deal with complex, evolving, continuous,
dynamically changing processes.

1.10 Further Reading

• Statistical Learning (Vapnik, 1998; Cherkassky and Mulier, 1998)
• Incremental LDA Feature Selection and Modelling (Pang et al., 2005, 2006)
• Incremental PCA Feature Selection and Modelling (Ozawa et al., 2005, 2006)
• SVM (Vapniak, 1998)
• Chaotic Processes (Barndorff-Nielsen et al., 1993; Gleick, 1987; Hoppensteadt,

1989; McCauley, 1994)
• Emergence and Evolutionary Processes (Holland, 1998)
• Introduction to the Principles of Artificial Neural Networks (Aleksander, 1989;

Aleksander and Morton, 1990; Amari, 1967, 1990; Arbib, 1972, 1987, 1995, 2002;
Bishop, 1995; Feldman, 1989; Hassoun, 1995; Haykin, 1994; Hecht-Nielsen, 1987;
Hertz et al., 1991; Hopfield, 1982; Kasabov, 1996; Rumelhart et al., 1986; Werbos,
1990; Zurada, 1992)

• Principles and Classification of online Learning Connectionist Models (Murata
et al., 1997; Saad, 1999)

• ANN and MLP for Data Analysis (Gallinari et al., 1988)
• Catastrophic Forgetting in Multiplayer Perceptrons and other ANN (Robins,

1996)
• Time-series Prediction (Weigend et al., 1990; Weigend and Gershefeld, 1993)
• Local Learning (Bottu and Vapnik, 1992; Shastri, 1999)
• Emerging Intelligence (EI) in Autonomous Robots (Nolfi and Floreano, 2000)

52 Evolving Connectionist Systems

• Integrating ANN with AI and Expert Systems (Barnden and Shrinivas, 1991;
Giacometti et al., 1992; Hendler and Dickens, 1991; Hinton, 1990; Kasabov, 1990;
Medsker, 1994; Morasso et al., 1992; Touretzky and Hinton, 1985, 1988; Towell
and Shavlik, 1993, 1994; Tresp et al., 1993)

• Integrating ANN with Fuzzy Logic (Furuhashi et al., 1993; Hayashi, 1991;
Kasabov, 1996; Kosko, 1992; Takagi, 1990; Yamakawa and Tomoda, 1989)

• Incremental PCA and LDA (Pang et al., 2005a, 2005b; Ozawa et al., 2004, 2005)
• Transductive Learning and Reasoning (Vapniak, 1998; Cherkassky and Mulier,

1998; Song and Kasabov, 2005, 2006)
• Comparison Among Local, Global, Inductive, and Transductive Modelling

(Kasabov, 2007b)

2. Evolving Connectionist Methods
for Unsupervised Learning

Unsupervised learning methods utilise data that contain input vectors only. Evolving
unsupervised learning methods are about learning from a data stream of unlabelled
data e.g. financial market, biological data, patient medical data, weather data, mobile
telephone calls, or radioastronomy signals from the universe. They develop their
structure to model the incoming data in an incremental, continuous learning mode.
They learn statistical patterns such as clusters, probability distribution, and so on.

This chapter presents various methods for unsupervised adaptive incremental
learning that include clustering, prototype learning, and vector quantisation,
along with their generic applications for data analysis, filling missing values in
data, classification, transductive learning, and reasoning. The learned clusters,
categories, and the like represent new knowledge. The emphasis here is put on
the model adaptability – they are evolving, and on their features to facilitate rule
extraction and pattern/knowledge discovery, which are the main objectives of the
knowledge engineering approach that we take in this book. The chapter material
is presented in the following sections.

• Unsupervised learning from data; distance measure
• Clustering
• Evolving clustering. ECM.
• Vector quantisation. SOM. ESOM
• Prototype learning. ART
• Generic applications of unsupervised learning methods
• Exercise
• Summary
• Further readings

2.1 Unsupervised Learning from Data. Distance Measure

2.1.1 General Notions

As pointed out in Chapter 1, many real-world information systems use data
streams. Such data streams are, for example: financial data such as stock market
indexes; video streams transferred across the Internet; biological information,

53

54 Evolving Connectionist Systems

made available in an increasing volume, such as DNA and protein data; patient
data; climate information; radioastronomy signals; etc. To manipulate a large
amount of data in an adaptive mode and to extract useful information from it,
adaptive, knowledge-based methods are needed.

Evolving, unsupervised learning methods are concerned with learning statistical
and other information characteristics and knowledge from a continuous stream
of data. The distribution of the data in the stream may not be known in advance.
Such unsupervised methods are adaptive clustering, adaptive vector quantisation,
and adaptive prototype learning presented in the next sections. The similarity and
the difference among clustering, quantisation, and prototyping is schematically
illustrated in Fig. 2.1. The time line and ‘time-arrow’ on the figure show the order
in which the data vectors are presented to the learning system. Different methods
for unsupervised evolving connectionist systems are presented and illustrated in
the rest of the chapter.

2.1.2 Measuring Distance in Unsupervised Learning Techniques

In the context of clustering, quantisation, and prototype learning, we can assume
that we have a data manifold X of dimension d; i.e., X ⊆ Rd . We aim at finding a
set of vectors �c1� � � � � cn�, that encodes the data manifold with small quantisation
error. Vector quantisation usually utilizes a competitive rule; i.e. a new input
vector x is represented by the best matching unit ci, that satisfies the conditions:

��x − ci�� ≤ ��x − cj���∀j �= i� i� j ∈ �1� n� (2.1)

where ��x-ci�� measures a distance.

Time arrow

Original d-dimensional space

Clustering

Vector Quantization

Prototype Learning

X
X

Y

X

Two clusters are defined

Four prototypes are found

d1

d2

d1

d3

d4

d5

d6

d7

d8

d9

C1
C2

d1

d2

d3
d4

d2

d3

d4

d5

d6

d7

d8

d9

d5

d6

d7

d`

d` d`
d`

d`

d`

d`

d`

d`

d8

d9 P1

P2

P3

P4

x
x

x

x

7

82
5

1

3

6

4

9

Fig. 2.1 Clustering, vector quantization, and prototype learning as unsupervised learning techniques.

Evolving Connectionist Methods for Unsupervised Learning 55

The goal is to minimize the reconstruction error

E =∑
x∈X

��	x
	x − ci	x

2� (2.2)

Here �	x
 is the probability distribution of data vectors over the manifold X.
Measuring distance is a fundamental issue in all the above-listed methods. The

following are some of the most used methods for measuring distance, illustrated
on two n-dimensional data vectors x = 	x1� x2� � � �� xn
 and y = 	y1� y2� � � �� yn
 :

• Euclidean distance:

D	x� y
 = √[(∑
i=1����n

	xi −yi

2
)

/n
]

(2.3)

• Hamming distance:

D	x� y
 =
(∑

i=1����n
�xi −yi�

)
/n� (2.4)

where absolute values of the difference between the two vectors are used.

• Local fuzzy normalized distance (see Chapter 3; also Kasabov (1998)):

A local normalised fuzzy distance between two fuzzy membership vectors xf and
yf that represent the membership degrees to which two real vector data x and y
belong to predefined fuzzy membership functions is calculated as:

D	xf � yf
 = ��xf − yf ��/��xf + yf �� (2.5)

where ��xf –yf �� denotes the sum of all the absolute values of a vector that is obtained
after vector subtraction (or summation in case of ��xf +yf ��
 of two vectors xf and
yf of fuzzy membership values; / denotes division.

• Cosine distance:
D = 1−SUM

(√
xiyi

/√
xi

2
√

yi
2
)

(2.6)

• Correlation distance:

D = 1− n∑

i=1
	xi −xi
	yi −yi

/
n∑

i=1
	xi −xi

2 	yi −yi

2 (2.7)

where xi is the mean value of the variable xi.

Some examples of measuring distance are shown in Fig. 2.2, which illustrates both
Euclidean and fuzzy normalized distance. Using Euclidean distance may require
normalization beforehand as illustrated in the figure. In this figure x1 is in the
range of [0,100] and x2 is in the range of [0,1]. If x1 is not normalised, then the
Euclidean distance D (A�B) is greater than the distance D	C�D
. Otherwise, it will

56 Evolving Connectionist Systems

A B

D

C

x2

x1
1000

1H

M

S

S M H

Fig. 2.2 Euclidean versus fuzzy normalized and fuzzy distance illustrated on four points in a two-dimensional
space (x1, x2). If the variable values are not normalised, the Euclidean distance between A and B will be
greater than the distance between D and C as the range of variable x1 is 100 times larger than the range
of the variable x2. If either normalised or fuzzified (three membership functions, denoted S for small, M for
medium, and H for high) values are used, the relative distance between D and C will be greater than the
distance between A and B.

r1

r3 r2

new data d1

new data d2

x

x

Fig. 2.3 Voronoi tessellation (the straight solid lines) versus hypersphere separation (the circles) of a hypothetical
problem space separating three clusters – r1, r2, and r3 – defined by their centres and hyperspheres.

Evolving Connectionist Methods for Unsupervised Learning 57

be the opposite. For the fuzzy normalised distance D	A�B
 < D	C�D
 is always
held. In the example, three membership functions are used: Small (S), Medium
(M), and High (H) for each of the two variables.

Figure 2.3 illustrates two ways of space partitioning among three nodes r1,
r2, and r3: Voronoi tessellation (see Okabe et al. (1992)), the straight lines, and
hyperspheres. The latter is described in detail in Chapter 3 for the EFuNN model.
When using Voronoi tessellation a new data vector d1 will be allocated to node
r2, whereas if using hyperspheres, it will be allocated to r1. A new data point d2
will be allocated to r2 in the first case, but there will not be a clear allocation in
the second case.

2.2 Clustering

2.2.1 Batch-Mode versus Evolving Clustering

Clustering is the process of defining how data are grouped together based on
similarity. Clustering results in the following outcomes.

• Cluster centres: These are the geometrical centers of the data grouped together;
their number can be either predefined (batch-mode clustering) or not defined
a priori but evolving.

• Membership values, defining for each data vector to what cluster it belongs.
This can be either a crisp value of 1 (the vector belongs to a cluster) or 0 (it
does not belong to a cluster, as it is in the k-means method), or a fuzzy value
between 0 and 1 showing the level of belonging; in this case the clusters may
overlap (fuzzy clustering).

Evolving, adaptive clustering is the process of finding how data from a continuous
input stream z	t
, t = 0� 1� 2� � � � are grouped (clustered) together at any time
moment t. It requires finding the cluster centres, the cluster area occupied by each
cluster in the data space, and the membership degrees to which data examples
belong to these clusters.

New data, entered into the system, are either associated with existing clusters
and the cluster characteristics are changed, or new clusters are created. Based
on the current p vectors from an input stream x1� x2� x3� � � � � xp� � � � � n clusters
are defined in the same input space, so that n << p. The cluster centres can be
represented as points in the input space X of the data points. Adaptive evolving
clustering assumes that each input data vector from the continuous input data
stream is presented once to the system as it is assumed that it will not be accessible
again. Adaptive clustering is a type of incremental learning, so each new data
example xi contributes to the changes in the clusters and this process can be traced
over time. Through tracing an adaptive clustering procedure, it can be observed
and understood how the modelled process has developed over time.

In contrast to the adaptive incremental clustering, off-line batch mode clustering
methods are usually iterative, requiring many iterations to find the cluster
centres that optimise an objective function. Such a function minimizes the

58 Evolving Connectionist Systems

distance between the data elements and their clusters, and maximizes the distance
between the cluster centres. Such methods for example are k-means clustering
(MacQueen, 1967), hierarchical clustering, and fuzzy C-means clustering (Bezdek,
1981, 1987, 1993).

2.2.2 K-Means Clustering

A popular clustering method is the K-means algorithm (MacQueen, 1967), which
finds K disjoint groups of data (clusters) and their cluster centres as the mean of
data vectors within a cluster. This procedure minimises the sum of the distances for
each data vector and its closest cluster centre. Usually, this is done in a batch mode
through many iterations, starting with K randomly selected cluster centres (Lloyd,
1982). The adaptive version of the K-means algorithm (MacQueen, 1967; Moody
and Darken, 1989), applied without prior knowledge of the data distribution, is a
stochastic gradient descent on Eq. (2.2). Starting with K randomly selected cluster
centres, ci, I = 1� 2� � � �, K , for each new data vector x the closest cluster centre is
updated as follows.

�ci = x–ci � if ci is the closest cluster centre for x��ci = 0 otherwise 	for j �= i

(2.8)

This learning rule is also referred as the ‘local k-means algorithm’. It is of the
winner-takes-all type and can operate in a dynamic environment with continu-
ously arriving data. But it can also suffer from confinement to a local minimum
(Martinetz et al., 1993). To avoid this problem some ‘soft’ computing schemes
are proposed to modify reference vectors (cluster centres), in which not only the
‘winner’ prototype is modified, but all reference vectors are adjusted depending
on their proximity to the input vector.

In both batch mode and adaptive mode of K-means clustering, the number of
clusters is predefined in advance. The K-means clustering method uses an iterative
algorithm that minimizes the sum of distances from each sample to its cluster
centre over all clusters until the sum cannot be decreased further. The control of
the minimisation procedure is done through choosing the number of clusters, the
starting positions of the clusters (otherwise they will be randomly positioned), and
number of iterations.

As the data vectors are grouped together in a predefined number of clusters
based on similarity measure, if Euclidean distance is used, the clustering procedure
may result in different cluster centers if data are normalised (scaled into a given
interval, e.g. [0,1], either in a linear or in an nonlinear fashion), versus nonnor-
malised data; see Fig. 2.4a,b.

Another method for clustering is the DCA (dynamic clustering algorithm; Bruske
and Sommer (1995)). The method does require a predefined number of clusters.
This algorithm is used for dynamic fMRI cortical activation analysis data.

2.2.3 Hierarchical Clustering

The hierarchical clustering procedure finds similarity (distance) between each pair
of samples using correlation analysis, and then represents this similarity as a

Evolving Connectionist Methods for Unsupervised Learning 59

(a)

(b)

Fig. 2.4 An illustration of k-means clustering on the case study of gas-furnace data (see Fig. 1.3). The procedure
results in different cluster centres and membership values for the data vectors that are not normalised, shown
in (a), versus linearly normalised in the interval [0,1] data as shown in (b).

60 Evolving Connectionist Systems

Fig. 2.5 Hierarchical clustering: (a) of the Iris data – 4 variables; (b) Gene expression data of Leukaemia cancer
– 12 variables.

dendogram tree . Figure 2.5 shows two cases of hierarchical clustering: (a) the four
Iris input variables, and (b) a set of 12 gene expression variables represented as
columns for the leukaemia data (see Chapter 1).

2.2.4 Fuzzy Clustering

Fuzzy clustering results in finding cluster centres and fuzzy membership degrees
(numbers between 0 and 1) to which each data point belongs for each of the
existing clusters. In the C-means clustering method for each data point these
numbers add up to 1. Some other methods, such as the evolving clustering method
(ECM) introduced in this chapter and the evolving fuzzy neural network (EFuNN)
introduced in the next chapter, define clusters as overlapping areas (e.g. hyper-
spheres) and a data point d can geometrically fall into several such overlapping
clusters. Then it is considered that this point belongs to each of these clusters and
the membership degree is defined by the formula 1−D	d� c
, where D	d� c
 is the
normalised Euclidean or normalised fuzzy distance between the data point d and
the cluster centre c (see the text below).

In Fig. 2.6 the fuzzy C-means clustering algorithm, proposed by Jim Bezdek
(1981) is outlined. A general description of fuzzy clustering is given in the
extended glossary. A validity criterion for measuring how well a set of fuzzy
clusters represents a dataset can be applied. One criterion is that a function
J	c
 =

	�i�k

2 �	xk − Vi
2 − 	Vi − Mx
2� reaches local minimum, where Mx is
the mean value of the variable x, Vi is a cluster centre and �i�k is the membership
degree to which xk belongs to the cluster Vi. If the number of clusters is not
defined, then the clustering procedure should be applied until a local minimum
of J	c
 is found, which means that c is the optimal number of clusters. One of the
advantages of the C-means fuzzy clustering algorithm is that it always converges

Evolving Connectionist Methods for Unsupervised Learning 61

1. Initialise c fuzzy cluster centers V1, V2,..., Vc arbitrarily and calculate the membership degrees �i�k i = 1,2,...,c, k = 1,2,...,n
such that the general conditions are met.
2. Calculate the next values for cluster centres:

Vi = �
n∑

k=1

��i�k�
2�xk�/�

∑

k=1

��i�k�
2�� for i = 1� 2� ���� c

3. Update the fuzzy degrees of membership:

�i�k = 1

�
c∑

j=1

dik
djk

�

� for di�k > 0�∀i� k

where: di�k = (xk −Vi�
2, dj�k = �xk −Vj�

2 (Euclidean distance)

4. If the currently calculated values Vi for the cluster centers are not different from the values calculated at the previous step
(subject to a small error), then stop the procedure, otherwise go to step 2.

Fig. 2.6 A general algorithm of Bezdek’s fuzzy C-means clustering (Bezek, 1981, from Kasabov (1996), MIT
Press, reproduced with permission).

to a strict local minimum. A possible deficiency is that the shape of the clusters is
ellipsoidal, which may not be the most suitable form for a particular dataset.

In most of the clustering methods (k-means, fuzzy C-means, ECM, etc.) the
cluster centres are geometrical points in the input space; e.g. c is (x = 3�7, y =
−2�3). But in some other methods such as the EFuNN, not only may each data
point belong to the clusters to different degrees (fuzzy), but the cluster centres are
defined as fuzzy coordinates and a geometrical area associated with this cluster.
For example, a cluster centre c can be defined as (x is Small to a degree of 0.7, and
y is Medium to a degree of 0.3; radius of the cluster area R = 0.3). Such clustering
techniques are called fuzzy-2 clustering in this book.

Fuzzy clustering is an important data analysis technique. It helps to represent
better the ambiguity in data. It can be used to direct the way other techniques for
information processing are used afterwards. For example, the structure of a neural
network to be used for learning from a dataset can be defined a great deal after
knowing the optimal number of fuzzy clusters.

Fuzzy clustering is applied on gene expression data in Chapter 8 and in Futschik
and Kasabov (2002).

2.3 Evolving Clustering Method (ECM)

2.3.1 ECM

Here, an evolving clustering method, ECM, is introduced that allows for adaptive
clustering of continuously incoming data. This method performs a simple evolving,
adaptive, maximum distance-based clustering (Kasabov and Song, 2002). Its
extension, ECMc, evolving clustering method with constrained optimisation, to
implement scatter partitioning of the input space for the purpose of deriving
fuzzy inference rules, is also presented. The ECM is specially designed for
adaptive evolving clustering, whereas ECMc involves some additional tuning of the

62 Evolving Connectionist Systems

cluster centres, more suitable for combined adaptive and off-line tasks (combined
learning; see Chapter 1). The ECMc method takes the results from the ECM as
initial values, and further optimises the clusters in an off-line mode with a prede-
fined objective function J (C�X) based on a distance measure between data X and
cluster centres C, given some constraints.

The adaptive evolving clustering method, ECM, is a fast one-pass algorithm for
dynamic clustering of an input stream of data (Kasabov and Song, 2002), where
there is no predefined number of clusters. It is a distance-based clustering method
where the cluster centres are represented by evolved nodes in an adaptive mode.
For any such cluster, the maximum distance MaxDist, between an example point
xi and the closest cluster centre, cannot be larger than a threshold value Dthr,
that is, a preset clustering parameter. This parameter would affect the number
of the evolved clusters. The threshold value Dthr can be made adjustable during
the adaptive clustering process, depending on some optimisation and self-tuning
criteria, such as current error, number of clusters, and so on.

During the clustering process, data examples come from a data stream and this
process starts with an empty set of clusters. When a new cluster Cj is created, its
cluster centre Ccj is defined and its cluster radius Ruj is initially set to zero. With
more examples presented one after another, some already created clusters will
be updated through changing their centres’ positions and increasing their cluster
radii. Which cluster will be updated and how much it will be changed depends on
the position of the current data example in the input space. A cluster Cj will not
be updated any more when its cluster radius Ruj has reached the value equal to
the threshold value Dthr. Figure 2.7 shows an illustration of the ECM clustering
process in a 2D space.

The ECM Algorithm

Step 0: Create the first cluster C1 by simply taking the position of the first
example from the input data stream as the first cluster centre Cc1, and setting
a value 0 for its cluster radius Ru1 (see Fig. 2.7a).
Step 1: If all examples from the data stream have been processed, the clustering
process finishes. Else, the current input example xi is taken and the normalised
Euclidean distance Dij between this example and all n already created cluster
centres Ccj, Dij = ��xi – Ccj��, j = 1� 2� � � �� n, is calculated.
Step 2: If there is a cluster Cm with a centre Ccm, a cluster radius Rum, and
distance value Dim such that:

	i
 Dim = ��xi −Ccm�� = min�Dij� = min���xi −Ccj���� for j = 1� 2� � � �� n� and

(2.9)

	ii
 Dim < Rum

the current example xi is considered as belonging to this cluster. In this case
neither a new cluster is created, nor any existing cluster updated (e.g. data
vectors x4 and x6 in Fig. 2.7). The algorithm then returns to Step 1.

Evolving Connectionist Methods for Unsupervised Learning 63

(a) (b)

x1

x1

x2

x4

C1
0

Cc1
0

Ru1 = 00

x3

C2
0

Cc2
0

Ru2 = 00

C1
1

Cc1
1

Ru1
1

xi: sample

(c) (d)

x8

x7

C3
0

Cc3
0

Ru3 = 00

C2
1

C1
3

x9

C3
0

Cc3
0

Ru1
3

C2
1

Cc2
1

Ru2
1

x5

x6C1
2

Cc1
2

Ru1
2

Ccj : cluster centrek

Ruj : cluster radiusk

Cj : cluster
k

*

*
**

*

*

*

*
* * *

*
*

*

*

*
*

*

*

*

*
*

*

Fig. 2.7 An evolving clustering process using ECM with consecutive examples x1 to x9 in a 2D space (from
Kasabov and Song (2002)): x1 causes the ECM to create a new cluster C1

0; x2 to update cluster C1
0 → C1

1;
x3 to create a new cluster C2

0; x4 to do nothing; x5 to update cluster C1
1 → C1

2; x6 to do nothing; x7 to
update cluster C2

0 → C2
1; x8 to create a new cluster C3

0; x9 to update cluster C1
2 → C1

3.

Else:

Step 3: Find a cluster Ca (with a centre Cca, a cluster radius Rua, and a distance
value Dia, which cluster has a minimum value Sia:

Sia = Dia +Rua = min�Sij�� j = 1� 2� � � �� n� (2.10)

Step 4: If Sia is greater than 2 × Dthr, the example xi does not belong to any
existing cluster. A new cluster is created in the same way as described in Step 0
(e.g. input data vectors x3 and x8 in Figure 2.7c). The algorithm then returns to
Step 1.

Else:

Step 5: If Siais not greater than 2×Dthr, the cluster Ca is updated by moving its
centre Cca and increasing its radius value Rua. The updated radius Rua

new is set
to be equal to Sia/2 and the new centre Cca

new is located on the line connecting
input vector xi and the old cluster centre Cca, so that distance from the new

64 Evolving Connectionist Systems

centre Cca
new to the point xi is equal to Rua

new (e.g. input data points x2, x5, x7,
and x9 in Fig. 2.7). The algorithm then returns to Step 1.

In this way, the maximum distance from any cluster centre to the farthest example
that belongs to this cluster is kept less than the threshold value Dthr although the
algorithm does not keep any information of passed examples.

The objective (goal) function here is a very simple one and it is set to ensure
that for every data example xi there is cluster centre Cj such that the distance
between xi and the cluster centre Ccj is less than a predefined threshold Dthr.

The evolving rules of ECM include:

• A rule for a new cluster creation
• A rule for existing cluster modification

2.3.2 ECMc: ECM with Constrained Optimisation

The evolving clustering method with constrained optimisation, ECMc, applies a
global optimisation procedure to the result produced by the ECM. In addition
to what ECM does, which is partitioning a dataset including p vectors xi, i =
1� 2� � � � � p , into n clusters Cj with cluster centres Ccj, j = 1� 2� � � � � n , the ECMc
further minimises an objective function based on a distance measure subject to
given constraints. Using the normalised Euclidean distance as a measure between
an example vector xk, belonging to a cluster Cj, and the corresponding cluster
centre Ccj, the objective function is defined by the following equation,

J =
j=1����� n Jj (2.11)

where Jj =
∑

k� xkECj ��xk −Ccj�� is the objective function within a cluster Cj, for each
j = 1� 2� � � �� n, and the constraints are defined as

��xk −Ccj�� ≤ Dthr (2.12)

where xkECj for j = 1� 2� � � �� n.
The clusters can be represented as a p×n binary membership matrix U , where

the element uij is 1 if the ith data point xi belongs to Cj, and 0 otherwise. Once
the cluster centres Ccj are defined, the values uij are derived as

if ��xi −Ccj�� ≤ ��xi −Cck��� for k = 1� � � � � n� j �= k� then uij = 1� else uij = 0 (2.13)

The ECMc algorithm works in an off-line iterative mode on a batch of data
repeating the steps shown in Fig. 2.8.

Combined alternative adaptive clustering with ECM and off-line optimisation
with ECMc can be used in a mode as follows. After the ECM is applied to a certain
sequence of data vectors, the ECMc optimisation is applied to the latest data from
a data window. After that, the system continues to work in an adaptive mode with
the ECM, and so on.

Evolving Connectionist Methods for Unsupervised Learning 65

ECMc evolving clustering with constraint optimisation

Step 1: Initialise the cluster centres Ccj, j = 1, 2, …, n, that are produced through the adaptive
evolving clustering method ECM.

Step 2: Determine the membership matrix U

Step 3: Employ the constrained minimisation method to modify the cluster centres.

Step 4: Calculate the objective function J

Step 5: Stop, if: (1) the result is below a certain tolerance value, or (2) the improvement of the
result when compared with the previous iteration is below a certain threshold, or (3) the iteration
number of minimizing operation is over a certain value. Else, the algorithm returns to Step2.

Fig. 2.8 The ECMc evolving clustering algorithm with constraint optimisation (from Kasabov and Song (2002)).

2.3.3 Comparative Analysis of ECM, ECMc, and Traditional
Clustering Techniques

Here, the gas-furnace time-series data is used as a benchmark dataset.
A benchmark process used widely so far is the burning process in a gas furnace
(Box and Jenkins, 1970). The gas methane is fed continuously into a furnace and
the produced CO2 gas is measured every minute. This process can theoretically
run forever supposing that there is a constant supply of methane and the burner
keeps mechanically intact. The process of CO2 emission is an evolving process. In
this case it depends on the quantity of the methane supplied and on the param-
eters of the environment. For simplicity, only 292 values of CO2 are taken in the
well-known gas-furnace benchmark problem. Given the values of methane at a
moment (t − 4) and the value of CO2 at the moment (t) the task is to predict
what the value for the CO2 at the moment (t +1) will be. The CO2 data from Box
and Jenkins (1970) along with some of their statistical characteristics, are plotted
in Fig. 1.3. It shows the 292 points from the time series, the 3D phase space, the
histogram, and the power spectrum of the frequency characteristics of the process.
Figure 2.9 displays a snapshot from the evolving clustering process of the 2D input
data (methane (t −4), CO2	t

 with the ECM algorithm.

For the purpose of comparative analysis, the following clustering methods are
applied to the same dataset.

1. ECM, evolving clustering method (adaptive, one pass)
2. SC, subtractive clustering (off-line, one pass; see Bezdek (1993))
3. ECMc, evolving clustering with constrained optimisation (off-line)
4. FCMC, fuzzy C-means clustering (off-line; Bezdek (1981, 1987))
5. KMC, K-means clustering (off-line; MacQueen (1967))

Each of them partitions the data into a fixed number of clusters; in this case this
number was chosen to be 15. The maximum distance MaxD, between an example
and the corresponding cluster centre, as well as the value of the objective function
J are measured for comparison as shown in Table 2.1.

66 Evolving Connectionist Systems

Fig. 2.9 A snapshot of the clustering process: cluster centres and their cluster radii when the ECM algorithm
is applied for online clustering on 146 gas-furnace data examples (see Fig. 1.3).

Table 2.1 Comparative results of clustering the gas-furnace data set into
15 clusters by using different clustering methods.

Methods MaxD Objective value: J

ECM (online, one-pass) 0.1 12.9
SC (off-line, one-pass) 0.15 11.5
ECMc (off-line) 0.1 11.5
FCM (off-line) 0.14 12.4
KM (off-line) 0.12 11.8

Figure 2.10 displays the data points from the gas-furnace time series and the
cluster centres obtained through the use of different clustering techniques.

Both ECM (adaptive, one pass) and ECMc (optimized through objective function,
multiple passes) obtain minimum values of MaxD, which indicates that these
methods partition the dataset more uniformly than the other methods. We can
also predict that if all these clustering methods obtained the same value for MaxD,
then the ECM and the ECMc would result in a smaller number of partitions.

Considering that the ECM clustering is a ‘one-pass’ adaptive process, the
objective function value J for ECM simulation is acceptable as it is comparable
with the J value for the other methods. With more data presented to the clustering
system from the data stream, the values for the objective functions for both
adaptive ECM and ECMc become closer; after a certain number of data points from
a time series the two methods will eventually produce the same results provided

Evolving Connectionist Methods for Unsupervised Learning 67

(a) ECM (online, one-pass)

X1

X
2

(b) SC (off-line, one-pass)

X1

X
2

(c) ECMc (off-line)

X1

X
2

(d) FCMC (off-line)

X1

X
2

(e) KMC (off-line)

X1

X
2

Fig. 2.10 Results of clustering of the gas-furnace dataset with the use of different clustering methods.

that the data are drawn from a closed space and the probability distribution of
the data stream does not change after a certain data point in the stream.

The advantages of the ECM online clustering technique can be summarised as

1. ECM allows for unsupervised, life-long, adaptive modelling of evolving
processes.

2. ECM is much faster than the off-line clustering techniques.

68 Evolving Connectionist Systems

2.4 Vector Quantisation. SOM and ESOM

2.4.1 Vector Quantisation

This is the process of transferring d-dimensional vectors into k-dimensional
vectors, where k << d, usually k = 2; i.e. this is a projection of d-dimensional
space into k-dimensional space whereas the distance between the data points is
maximally preserved in the new space.

In adaptive, evolving vector quantisation only one iteration may be applied
to each data vector from an input stream. This is different from the off-line
vector quantisation where many iterations are required. Such off-line quantisation
methods are principal component analysis (PCA), and self-organizing maps (SOM;
Kohonen (1977, 1982, 1990, 1993, 1997)). SOM that have dynamically changing
structures are described in Section 2.4.3. Evolving SOM (ESOM) are introduced in
Section 2.4.4.

2.4.2 Self-Organizing Maps (SOMs)

Here, the principles of the traditional SOMs are outlined first, and then some
modifications that allow for dynamic, adaptive node creation are presented.

Self-organizing maps belong to the vector quantisation methods where proto-
types are found in a prototype (feature) space (map) of dimension k rather than
in the input space of dimension d, k < d. In Kohonen’s self-organizing feature
map (Kohonen, 1977, 1982, 1990, 1997) the new space is a topological map of 1,
2, 3, or more dimensions (Fig. 2.11).

The main ideas of SOM are as follows.

• Each output neuron specializes during the training procedure to react to similar
input vectors from a group (cluster) of the input space. This characteristic of
SOM tends to be biologically plausible as some evidence show that the brain is
organised into regions which correspond to similar sensory stimuli. A SOM is
able to extract abstract information from multidimensional primary signals and
to represent it as a location, in one-, two-, three-, etc. dimensional space.

X1 X2

Fig. 2.11 A schematic diagram of a simple, hypothetical two-input, 2D-output SOM system (from Kasabov
(1996), MIT Press, reproduced with permission).

Evolving Connectionist Methods for Unsupervised Learning 69

• The neurons in the output layer are competitive ones. Lateral interaction
between neighbouring neurons is introduced in such a way that a neuron has
a strong excitatory connection to itself, and less excitatory connections to its
neighbouring neurons in a certain radius; beyond this area, a neuron either
inhibits the activation of the other neurons by inhibitory connections, or does
not influence it. One possible neighbouring rule that implements the described
strategy is the so-called ‘Mexican hat’ rule. In general, this is a winner-takes-all
scheme, where only one neuron is the winner after an input vector is fed, and
a competition between the output neurons has taken place. The fired neuron
represents the class, the group (cluster), the label, or the feature to which the
input vector belongs.

• SOMs transform or preserve similarity between input vectors from the input
space into topological closeness of neurons in the output space represented as a
topological map. Similar input vectors are represented by near points (neurons)
in the output space.

The unsupervised algorithm for training a SOM, proposed by Teuvo Kohonen, is
outlined in Fig. 2.12. After each input pattern is presented, the winner is estab-
lished and the connection weights in its neighbourhood area Nt increase, and the
connection weights outside the area are kept unchanged. � is a learning parameter.
Training is done through a number of training iterations so that at each iteration
the whole set of input data is propagated through the SOM and the connection
weights are adjusted.

SOMs learn statistical features. The synaptic weight vectors tend to approximate
the density function of the input vectors in an orderly fashion. Synaptic vectors
wj converge exponentially to centres of groups of patterns and the nodes of the
output map represent to a certain degree the distribution of the input data. The
weight vectors are also called reference vectors, or reference codebook vectors.
The whole weight vector space is called a reference codebook

In SOM the topology order of the prototype nodes is predetermined and the
learning process is to ‘drag’ the ordered nodes onto the appropriate positions in
the low-dimensional feature map (see Fig. 2.11b, upper figure). As the original
input manifold can be complicated and an inherent dimension larger than that
of the feature map (usually set as two for visualization purposes), the dimension

K0. Assign small random numbers to the initial weight vectors wj(t=0), for every neuron j from the output map.
K1. Apply an input vector x (x1, x2, ..., xn) at the consecutive time moment t.

K2. Calculate the distance dj (in n-dimensional space) between x and the weight vectors Wj(t) of each neuron j.

K3. The neuron K which is closest to X is declared winner. It becomes a center of a neighbourhood area Nt.

K4. Change all the weight vectors within the neighbourhood area:
wj(t+1) = wj(t) +
.(x − wi(t)), if j � Nt,
wj(t+1) = wj(t), if j is not from the area Nt

All of the steps from K1 to K4 are repeated for all training instances. Nt and
 decrease in time. The training procedure is
repeated again with the same training instances until convergence is achieved.

Fig. 2.12 The SOM training algorithm (from Kasabov (1996), MIT Press, reproduced with permission).

70 Evolving Connectionist Systems

reduction in SOM may become inappropriate for complex data analysis tasks.
The SOM have been extended for supervised learning to LVQ (Learning vector
Quantisation) (Kohonen, 1997).

2.4.3 Dynamic SOMs

The constraints of a low-dimensional mapping topology of SOM are removed
in Martinez and Schulten (1991), where a neural gas model is proposed with a
learning rule similar to SOM, but the prototype vectors are organized in the original
manifold of the input space. Each time the prototype weights are updated the
neighbourhood rank, i.e. the matching rank of prototypes, needs to be computed.
Unfortunately, this brings the time complexity of the algorithm to the scale of (n
log n) in a serial implementation, whereas searching for the best matching unit in
the K-means algorithm or in the SOM algorithm takes only n steps.

Fritzke (1995) proposed a growing structure neural gas (GNG) which uses a fixed
topology for reference vector space, but there is no predefined layout order for map
nodes. The map creates new nodes whenever input data are not closely matched by
existing reference vectors, and sets up connections between neighbouring nodes.
One of the goals of the method is to insert more nodes in the model where the
density of the data in that subspace is higher, thus keeping the entropy at its
maximum value. If a node has more data associated with it, the node gets split
and a new one is created as illustrated in Fig. 2.13a,b. It is statistical knowledge
that is accumulated in the model and used to optimise its structure.

Bruske and Sommer (1995) presented another similar model, dynamic cell
structure (DCS), slightly differing from GNG in the node insertion part. GNG,
and DCS need to calculate local resources for prototypes, which introduces extra
computational effort and reduces their efficiency.

SOM and its derivatives are unsupervised learning methods. The SOM algorithm
was further extended to the learning vector quantisation (LVQ) algorithm for

Number of examples associated with this node

3 4

51

2 2

22

4

Separators of the Voronoi regions

2 2

2

2

2

2
1

2

3 4

5
6

(a) (b)

2

Fig. 2.13 An example of splitting neurons in the growing neural gas structure (see Fritzke (1995)): (a) initial
structure; (b) the structure after node #2 was split and a new node #6 was created.

Evolving Connectionist Methods for Unsupervised Learning 71

learning supervised pattern classification data (Kohonen, 1990). Vesanto (1997)
incorporated a local linear regression model on the top of a SOM map for a
time-series prediction problem. This method constructs local prototype vectors
and uses linear regression models on these vectors. Strictly speaking, this is not an
incremental learning approach and the complexity of the model usually is larger
than the scale of the number of prototype vectors.

2.4.4 Evolving Self-Organizing Maps (ESOM)

Several methods, such as: dynamic topology representing networks (Si et al., 2000)
and evolving self-organizing maps (ESOM; Deng and Kasabov (2000)) further
develop the principles of SOM. These methods allow the prototype nodes to
evolve in the original data space X, and at the same time acquire and keep a
topology representation. The neighbourhood of the evolved nodes (neurons) is
not predefined as it is in a SOM. It is decided in an online mode according to
the current distances between the nodes. These methods are free of the rigid
topological constraints in a SOM. They do not require searching for neigh-
bourhood ranking as in the neural gas algorithm, thus improving the speed of
learning.

Here, the ESOM method is explained in more detail.
Given an input vector x, the activation on the ith node in ESOM is defined as:

ai = e−��x−wi��2/�2
(2.14)

where � is a radial. Here ai can be regarded as a matching score for the ith
prototype vector wi onto the current input vector x. The closer they are, the bigger
the matching score is.

The following online stochastic approximation of the error minimization
function is used.

Eapp =
i=1�nai��x − wi��2 (2.15)

where n is the current number of nodes in ESOM upon arrival of the input
vector x.

To minimize the criterion function above, weight vectors are updated by
applying a gradient descent algorithm. From Eq. (2.15) it follows

�Eapp/�wi = ai	wi − x
+��x − wi��2�ai/�wi (2.16)

For the sake of simplicity, we assume that the change of the activation will be
rather small each time the weight vector is updated, so that ai can be treated as a
constant. This leads to the following simplified weight-updating rule.

�wi = �ai	x − wi
� for i = 1� 2� � � � � n (2.17)

Here � is a learning rate held as a small constant.

72 Evolving Connectionist Systems

The likelihood of assigning the current input vector x onto the ith prototype wi

is defined as

Pi	x�wi
 = ai/
k=1�2� ��� �n	ak
 (2.18)

Evolving the Feature Map

During online learning, the number of prototypes in the feature map is usually
unknown. For a given dataset the number of prototypes may be optimum at a
certain time but later it may become inapropriate as when new samples arrive the
statistical characteristics of the data may change. Hence it is highly desirable for
the feature map to be dynamically adaptive to the incoming data.

The approach here is to start with a null map, and gradually allocate new
prototype nodes when new data samples cannot be matched well onto existing
prototypes. During learning, when old prototype nodes become inactive for a long
time, they can be removed from the dynamic prototype map.

If for a new data vector x none of the prototype nodes is within a distance
threshold, then a new node wnew is inserted representing exactly the poorly matched
input vector wnew = x, resulting in a maximum activation of this node for x.

The ESOM evolving algorithm is given in Box 2.1.

Box 2.1. The ESOM evolving self-organised map algorithm:

Step 1: Input a new data vector x.
Step 2: Find a set S of prototypes that are closer to x than a predefined
threshold.
Step 3: If S is null, go to step 4 (insertion), otherwise calculate the activations
ai of all nodes from S and go to step 5 (updating).
Step 4 (insertion): Create a new node wi for x and make a connection between
this node and its two closest nodes (nearest neighbours) that will form a set S.
Step 5 (updating):Modify all prototypes in S according to (2.17) and recalculate
the connections s	i� j
 between the winning node i (or the newly created one)
and all the nodes j in the set S: s	i� j
 = aiaj/ max�ai� aj�.
Step 6: After a certain number of input data are presented to the system, prune
the weakest connections. If isolated nodes appear, prune them as well.
Step 7: Go to step 1.

Visualising the Feature Map

Sammon projection is used here to visualise the evolving nodes at each time when
it is necessary. In addition to the node projection in a 2D space, the topology of
node connections is also shown as links between neighbouring nodes. This is a
significant difference between the ECM presented in Section 2.2 and the ESOM
(see examples on Fig. 2.17b, Fig. 2.19).

Evolving Connectionist Methods for Unsupervised Learning 73

2.5 Prototype Learning. ART

2.5.1 Adaptive Prototype Learning

This is a similar technique to the adaptive clustering methods, but here instead
of n cluster centres and membership degrees, n prototypes of data points are
found that represent to a certain degree of accuracy the whole data stream up
to the current point in time. The d-dimensional space, with p examples currently
presented, is transformed into n prototypes in the same space.

SOMs and ESOMs form prototypes as nodes that are placed in the original data
space. Each prototype gets activated if an example from the prototype area is
presented to the system. This is explained later in this chapter.

2.5.2 Adaptive Resonance Theory

Here, a brief outline of one of the historically first, and computationally simplest,
adaptive prototyping systems – ART1 and ART2 – is given (Carpenter and
Grossberg, 1987).

Adaptive resonance theory (ART) makes use of two terms from brain behaviour,
i.e. stability and plasticity. The stability/plasticity dilemma is the ability of a
system to preserve the balance between retaining previously learned patterns and
learning new patterns. Two layers of neurons are used to realize the idea: a ‘top’
layer, an output concept layer, and a ‘bottom’ layer, an input feature layer. Two
sets of weights between the neurons in the two layers are used. The top-down
weights represent learned prototype patterns, expectations. The bottom-up weights
represent a scheme for new inputs to be accommodated in the network.

Patterns, associated with an output node j, are collectively represented by
the weight vector of this node tj (top-down weight vector, prototype). The
reaction of the node j to a particular new input vector is defined by another
weight vector bj (bottom-up weight). The key element in the ART realisation
of the stability/plasticity dilemma is the control of the partial match between
new feature vectors and already learned ones achieved by using a parameter,
called vigilance, or vigilance factor. Vigilance controls the degree of mismatch
between the new patterns and the learned (stored) patterns which the system can
tolerate.

Figure 2.14a shows a diagram of a simple ART architecture (Carpenter and
Grossberg, 1987). It consists of two sets of neurons: input (feature) neurons (first
layer) and output neurons (second layer). The bottom-up connections bij from
each input i to every output j and the top-down connections tji from the outputs
back to the inputs are shown in the figure. Each of the output neurons has a strong
excitatory connection to itself and a strong inhibitory connection to each of the
other output neurons.

The ART1 learning algorithm for binary inputs and outputs is given in Fig. 2.14b.
It consists of two major phases. The first one is presenting the input pattern
and calculating the activation values of the output neurons. The winning neuron
is defined. The second phase is for calculating the mismatch between the input
pattern and the pattern currently associated with the winning neuron. If the

74 Evolving Connectionist Systems

x1 x2 x3

Inputs

Outputs

(a)

o1 o2
+ +–

–

(b)

A1. Weight coefficients are initialized:
tij	0
:1, bij :=1/(1+n), for each i=1,2,...,n; j=1,2,...m

A2. A coefficient of similarly r, a so-called vigiliance factor, is defined, 0<=r<=1. The greater the
value of r, the more similar the patterns ought to be in order to activate the same output
neuron representing a category, a class, or a concept.

A3. WHILE (there are input vectors) DO
(a) a new input vector x(t) is fed at moment t, x = (x1,x2,...,xn
(t)
(b) the outputs are calculated:

Oj=
∑

bij(t).xi(t), for j=1,2..., m
(c) an output oj

∗ with the highest value is defined;
(d) the similarly of the associated to j∗ input pattern is defined:

IF (number of "1"s in the intersection of the vector x(t) and tj
∗(t)) divided to the number of

"1"s in x(t) is greater than the vigilance r) THEN GO TO (f)

ELSE
(e) the output j∗ is abandoned and the procedure returns to (b) in order to calculate another

output to be associated with x(t);
(f) the pattern x(t) is associated with the vector tj

∗(t), therefore the pattern tj
∗(t) is changed

using its intersection with x(t):
tij

∗(t+1):=tij
∗(t).xi(t), for i=1,2,...,n

(g) the weights bij are changed:
bij

∗(t+1):=bij
∗(t)+tij

∗(t).xi/(0.5+
∑

tij
∗(t). xi(t))

Fig. 2.14 (a) A schematic diagram of ART1; (b) the ART1 learning algorithm presented for n inputs and m
outputs (from Kasabov (1996), MIT Press, reproduced with permission).

mismatch is below a threshold (vigilance parameter) this pattern is updated to
accommodate the new one. But if the mismatch is above the threshold, the
procedure continues to either find another output neuron, or to create a new one

An example of applying the algorithm for learning a stream of three patterns
is presented in Fig. 2.15. The network associates the first pattern with the
first output neuron, the second pattern with the same output neuron, and the
third input pattern with a newly created second output neuron. If the network
associates a new input pattern with an old one, it changes the old one respectively.
For binary inputs, the simple operation of binary intersection (multiplication)
is used.

Evolving Connectionist Methods for Unsupervised Learning 75

Input Pattern Top-down template
Output 1 Output 2

Fig. 2.15 Patterns presented to an ART1 system and learned as two prototypes at three consecutive time
moments. If a new pattern did not match an existing prototype above the vigilance parameter value, a new
output node was created to accommodate this pattern as a new prototype (from Kasabov (1996), MIT Press,
reproduced with permission).

ART1 was further developed into ART2 (continuous values for the inputs;
Carpenter and Grossberg (1987)), ART3 (Carpenter and Grossberg, 1990), Fuzzy
ARTMAP (Carpenter et al., 1991). The latter is an extension of ART1 when input
nodes represent not ‘yes or no’ features, but membership degrees, to which the
input data belong to these features, for example, a set of features {sweet, fruity,
smooth, sharp, sour} used to categorise different samples of wines based on their
taste. A particular sample of wine can be represented as an input vector consisting
of membership degrees, e.g. (0.7, 0.3, 0.9, 0.2, 0.5). The fuzzy ARTMAP allows
for continuous values in the interval of [0,1] for both the inputs and for the
top-down weights. It uses fuzzy operators MIN and MAX to calculate intersection
and union between the fuzzy input patterns x and the continuous-value weight
vectors t.

2.6 Generic Applications of Unsupervised Learning Methods

2.6.1 Data Analysis. Time-Series Data Analysis

Clustering of data may reveal important patterns that can lead to knowledge
discovery in various application areas. Data can be either static, or dynamic
time-series data as illustrated in Fig. 2.16, where three gene expression variables
measured over time are clustered together based on their similarity of values over
the time of measurement. The mean time series (the temporal cluster centre) is
also shown.

The clustered genes together suggest that these genes may have a similar function
in a cell, or may co-regulate each other which is important information for the
understanding of the interaction between these genes.

76 Evolving Connectionist Systems

2 4 6 8 10 12 14 16

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2 Cluster 5−3 Members

Time

E
xp

re
ss

io
n

Mean
Node

Fig. 2.16 A cluster of three data time series that have similar temporal profiles: three genes which expression
level is measured at several time moments. The mean value of the time series (the temporal cluster centre) is
also shown.

2.6.2 Filling Missing Values

In the case of datasets that have missing values for some variables and some
samples, data can be clustered according to the available variable values and the
missing values can be assigned based on similarity of the samples with missing
values to other samples that have no missing values as shown in Box 2.2.

Box 2.2. Using clustering for filling missing values:

1. Assume that the value xim is missing in a vector (sample) Sm =
	x1m� x2m� � � � � xim� � � � � xnm
.

2. Find the closest K samples to sample Sm based on the distance, measured
with the use of the only available variables (xi is not included) – set Smk.

3. Substitute xim =
j=1�K 	1 − dj
 xij/
j=1�K 	1 − dj
 where dj is the distance
between sample Sm and sample Sj from the set Smk.

4. For every new input vector x, find the closest K samples to build a model
(the new vector x is a centre of a cluster and find the K closest members of
this cluster)

2.6.3 Evolving Clustering Method for Classification (ECMC)

Generally speaking, if there are class labels associated with the examples used for
training a system, i.e. the examples are of the type z = 	x� y
, where y is a class
label, clustering methods can be used for classification purposes. The procedure
is the following one.

Evolving Connectionist Methods for Unsupervised Learning 77

1. Apply the clustering algorithm to data pairs 	x�y
, separately for each class
finding separate clusters for each class.

2. A new input datum x′ with unknown class label, is first clustered into one of
the existing clusters based on its distance from the cluster centres, and then
the class label y assigned to this cluster is assigned to the input data point as a
classification result y.

Example

The two-spirals problem is used here for illustration. The 2D training dataset is
generated with a density of 1 and consists of 194 data, with 97 data points for each
spiral (Fig. 2.17a) The testing dataset, generated with a density of 4, is composed
of 770 data with 385 data for each spiral.
(density 1, for training data):

{
� = 	� +�/2
/�

� = k�/16� k = 0� 1� 2� � � �� 96 (2.19)

(density 4, for testing data):

{
� = 	� +�/2
/�

� = k�/64� k = 0� 1� 2� � � �� 384� � �
(2.20)

{
spiral 1 � x = � cos	�

y = � sin	�

{
spiral2 � x = −� cos	�

y = −� sin	�

Further points of the spirals can be generated in the two-dimensional Euclidean
space, thus the process of generating spiral points can be considered evolving and
expanding in an open 2D space. Figure 2.17b compares the evolved structures
through using SOM (the upper figure) and through using ESOM (the lower figure).

An evolved ESOM is more suitable for the spiral data clustering problem than
a trained SOM, as SOM imposes a certain 2D grid that is not suitable for the
problem, whereas ESOM does not assume in advance any grid of connected nodes.

Two ECMc classification models were also created here. The first one had a
threshold Dthr of 0.955. It created 64 nodes and achieved a classification accuracy
of 100% on the training dataset and 98.4% on the test set. The second model
was evolved with Dthr = 0.98. It evolved 146 nodes and achieved 100% classifi-
cation accuracy for both the training and the test sets. Figures 2.18a,b show the
classification boundaries between the two classes for the two models.

78 Evolving Connectionist Systems

(a)

(b)

Fig. 2.17 The training data for the benchmark two-spirals problem: (a) the two-spiral benchmark data;
(b) evolved structures with the use of SOM (the upper figure) and ESOM (the lower figure).

Evolving Connectionist Methods for Unsupervised Learning 79

(a) (b)

Fig. 2.18 The two-spiral problem, decision regions of ECMc: (a) decision regions for ECMc (model 1, with 64
nodes); (b) decision regions for ECMc (model 2, with 146 nodes).

The two-spiral classification problem is further used as an illustration problem
in some other methods presented in this chapter. It shows that for simple classi-
fication problems unsupervised learning with clustering could provide a good
solution. The problem can be solved with the use of other supervised learning
schemes where the learning process takes into account the labelling of the data
when the model parameters are adjusted.

In ECM, as well as in other clustering algorithms, the learning system develops
in the original d-dimensional input data space X and the cluster centres Cc are
points in this space. In the case of a high-dimensional X space, visualisation of
the clusters becomes difficult. As a solution, the PCA or the Sammon projection
algorithm can be used to project approximately the d-dimensional space into two-
or three-dimensional visualisation space. This is illustrated also in Chapter 10
where ECM is used to evolve acoustic clusters from continuous speech data from
multiple languages.

2.6.4 ESOM for Classification

Here we assume that data arrive in pairs z = 	x� y
, where y is the class label
assigned to each input data vector x. When a new node wj is created to represent
an input vector xi, the node is assigned a class label yi.

A new input vector x′ with unknown class label is first mapped into the prototype
nodes. A k-nearest neighbour classification is applied then on the winning node
and its neighbours are linked to it through the neighbourhood links.

This is illustrated here on the benchmark two-spiral problem explained in the
above section (see also Fig 2.17b). Table 2.2 shows classification results obtained
with the use of different unsupervised learning models including ESOM.

ESOM is also applied on the Mackey–Glass data as explained and illustrated in
Chapter 1. Five variables are used that constitute the problem space: x	t
, x	t −6
,
x	t − 12
, x	t − 18
, and x	t + 6
. In Fig. 2.19 the evolved nodes from 200 data
points are plotted in a two-dimensional space of the first two principal components
of the original 5D problem space. Except for two nodes, all of them were created
during the presentation of the first 100 examples as shown in one of the windows
of the snapshot of a graphical user interface in Fig. 2.19. ESOM is applied for the

80 Evolving Connectionist Systems

Table 2.2 The result of classification of test data for the two-spiral problem using
ESOM and other classification algorithms.

Model No. of units Error rate No. of Epochs

GNG 145 0 180
DCS 135 0 135
LVQ 114 11.9% 50
SOM 144 22.2% 50
ESOM 105 0 1

analysis of gene expression data in Chapter 8, for adaptive analysis of image data
in Chapter 12, and for other applications throughout this book.

Fig. 2.19 The evolved ESOM structure from the Mackey–Glass time-series data for the following parameter
values: error threshold 0.08; learning rate 0.2; sigma 0.4. Five input variables are used: x�t�, x�t − 6�,
x�t − 12�, x�t − 18�, and x�t + 6� for 200 examples. The evolved nodes are plotted in a two-dimensional
space of the first two principal components of the problem space.

2.6.5 Evolving Clustering for Outlier Detection

Outlier detection is an important task in many applications where an unusual
situation should be automatically detected from the input data and reported. If the
current input vector is far from any of the clusters already created in the system,
it is an outlier. The outlier may be joined by some other data vectors later in time,
and thus will no longer be an outlier.

Evolving Connectionist Methods for Unsupervised Learning 81

Applications of outlier detection include:

• Online processing of radio signals from a radio telescope recording signals from
the universe (see, for example, SETI, Search for Extra Terrestrial Intelligence
Institute at www.seti.org).

• Online processing of data from a production pipeline, indicating a good or a
defect product (outlier).

• Many more.

2.7 Exercise

Assignment specification:

1. Select a dataset and run the following clustering algorithms:
a. k-means, for several numbers of predefined clusters
b. ECM, for various clustering parameter values
c. ECMC for classification in an inductive and transductive modes
d. Hierarchical clustering
e. SOM

2. Analyse the results and answer the following questions.
a. Which clustering methods are adaptive on new data?
b. What knowledge can be learned through clustering?

2.8 Summary and Open Problems

Models for adaptive unsupervised learning and data analysis, such as the presented
evolving, adaptive clustering, adaptive quantisation, and adaptive prototype
creation, have the following advantages when compared with the off-line learning
methods.

1. They are much faster as they require one pass of adaptive data propagation.
2. They do not require a preset number of prototypes or clusters. They create

prototypes or clusters in an adaptive mode depending on the incoming data.
3. They allow for adaptive learning and accumulating of statistical knowledge.
4. They allow for the process of learning to be traced in time.

The difficulty with the adaptive unsupervised methods is that a set goal function
J may not reach a minimum value, which is the case in off-line batch learning
modes. This problem is overcome if a sufficient number of data examples are
presented to the adaptive learning system. This is very much the case with the
lifelong learning systems.

The ECM method is extended to a knowledge-based connectionist learning
method DENFIS in Chapter 5.

The methods presented here are used in several applications described in Part
II of the book.

82 Evolving Connectionist Systems

This chapter also raises some open questions and problems:

1. In our everyday life we learn through using different approaches in concert, e.g.
unsupervised, supervised, reinforcement, and so on. How can this flexibility be
implemented in a system?

2. New ways of measuring distance between vectors, depending on their size,
data distribution, and so on, are needed. Would it be always appropriate to
use Euclidean distance, for example, for both measuring the distance between
data points in the two-dimensional gas-furnace data space, and in the 40,000-
dimensional gene expression space?

3. Would it be possible to combine different methods for measuring distance
between data vectors in one model?

4. How do we measure relative distance between consecutive data points from a
time series in contrast to measuring global absolute distance?

5. What is really learned through an unsupervised learning process if we do not
specify goals or expectations, and if we do not analyse the results? Should we
still call the process of feeding unlabelled data into a system a learning process?

6. Can unsupervised learning methods for classification perform better than super-
vised learning methods and when?

7. How can we integrate unsupervised learning with other sources of available
information to improve the knowledge representation and discovery?

2.9 Further Reading

• Details of the ESOM Algorithm (Deng and Kasabov, 2002, 2003)
• Details of the ECM Algorithm (Kasabov and Song, 2002)
• Clustering Algorithms – General (Hartigan, 1975; Bezdek, 1987).
• K-means Clustering (MacQueen, 1967).
• Fuzzy C-means Clustering (Bezdek, 1981, 1987, 1993)
• Incremental Clustering (Fisher, 1989)
• Adaptive Resonance Theory (Carpenter and Grossberg, 1987, 1990, 1991)
• Self-organizing Maps (Kohonen, 1977, 1982, 1990, 1993, 1997)
• Chaotic SOM (Dingle et al., 1993)
• Neural Gas (Martinez and Schulten, 1991).
• Growing Neural Gas (Fritzke, 1995)
• Dynamic Topology Representing Networks (Si et al., 2000)
• Kernel-based Equiprobabilistic Topographic Map Formation (Van Hulle, 1998)
• A Topological Neural Map for Adaptive Learning (Gaussier and Zrehen, 1994)
• Dynamic Cell Structures (Bruske and Sommer, 1995).
• Spatial Tessellation (Okabe et al., 1992)
• Online Clustering Using Kernels (Boubacar et al., 2006)

3. Evolving Connectionist Methods
for Supervised Learning

This chapter presents, as background knowledge, several well-known connec-
tionist methods for supervised learning, such as MLP, RBF, RAN, and then intro-
duces methods for evolving connectionist learning. These include simple evolving
MLP (eMLP), evolving fuzzy neural networks (EFuNN) and other methods. The
emphasis is on model adaptability and evolvability and on their facilities for rule
extraction and pattern/knowledge discovery, which are the main objectives of the
knowledge engineering approach that we take in this book. The chapter material
is presented in the following sections.

• Connectionist supervised learning methods
• Simple evolving connectionist methods
• Evolving fuzzy neural networks – EFuNN.
• Knowledge manipulation in EFuNN – rule insertion, rule extraction, rule

aggregation.
• Summary and open problems
• Exercise
• Further readings

3.1 Connectionist Supervised Learning Methods

3.1.1 General Notions

Connectionist systems for supervised learning learn from pairs of data (x�y), where
the desired output vector y is known for an input vector x. If the model is
incrementally adaptive, new data will be used to adapt the system’s structure and
function incrementally (see the classification scheme in Chapter 1).

As discussed in Chapter 1, the objective (goal) function used to optimise the
structure of the learning model during the learning process can be either global,
or a local goal function.

If a system is trained incrementally, the generalization error of the system on
the next new input vector (or vectors) from the input stream is called here local
incrementally adaptive generalization error. The local incrementally adaptive gener-
alization error at the moment t�for example, when the input vector is x�t�, and the
output vector calculated by the system is y�t�′, is expressed as Err�t� = ��y�t�−y�t�′��.

83

84 Evolving Connectionist Systems

The local incrementally adaptive root mean square error, and the local incre-
mentally adaptive nondimensional error index LNDEI(t) can be calculated at each
time moment t as

LRMSE�t� = √
��i = 1� 2� � � �� t�Err�i�2�/t�� (3.1a)

LNDEI�t� = LRMSE�t�/std�y�1� � y�t�� (3.1b)

where std(y(1):y�t�� is the standard deviation of the output data points from time
unit 1 to time unit t.

In a general case, the global generalisation root mean square error RMSE and
the nondimensional error index are evaluated on a set of p new (future) test
examples from the problem space as follows.

RMSE = √
��i = 1� 2� � � �� p��yi − yi′�2	/p�
 (3.2a)

NDEI = RMSE/std�y1 �yp�� (3.2b)

where std (y1: yp), is the standard deviation of the data from 1 to p in the test set.
After a system is evolved on a sufficiently large and representative part of

the whole problem space Z, its global generalisation error is expected to become
satisfactorily small, similar to the off-line, batch mode learning error.

3.1.2 Multilayer Perceptrons (MLP) and Gradient Descent Algorithms

Multilayer perceptrons (MLP) trained with a backpropagation algorithm (BP) use
a global optimisation function in both incrementally adaptive (pattern mode)
training, and in a batch mode training (Amari, 1967; Rumelhart et al., 1986;
Werbos, 1990).

The batch mode off-line training of a MLP is a typical learning method. Figure 3.1
depicts the batch mode backpropagation algorithm.

In the incremental, pattern learning mode of the backpropagation algorithm, after
each training example is presented to the system and propagated through it, an error
is calculated and then all connections are modified in a backward manner. This is
one of the reasons for the phenomenon called catastrophic forgetting: if examples are
presented only once, the model may adapt to them too much and ‘forget’ previously
learned examples, if the model is a global model. In an incrementally adaptive learning
mode, the same or very similar examples from the past need to be presented many
times again, in order for the system to properly learn new examples without forgetting
the “old” ones. The process of learning new examples while presenting previously
used ones is called ‘rehearsal’ training (Robins, 1996).

MLP can be trained in an incrementally adaptive mode, but they have limitations
in this respect as they have a fixed structure and the weight optimisation is a
global one if a gradient descent algorithm is used for this purpose.

A very attractive feature of the MLP is that they are universal function approx-
imators (see Cybenko (1989) and Funahashi (1989)) even though in some cases
they may converge in a local minimum.

Some connectionist systems that include MLP use a local objective (goal)
function to optimise the structure during the learning process. In this case when a

Evolving Connectionist Methods for Supervised Learning 85

Forward pass:
BF1. Apply an input vector x and its corresponding output vector y (the desired output).

BF2. Propagate forward the input signals through all the neurons in all the layers and calculate the output signals.
BF3. Calculate the Errj for every output neuron j as for example:

Errj=yj-oj, where yj is the jth element of the desired output vector y.

Backward pass:

BB1. Adjust the weights between the intermediate neurons i and output neurons j according to the calculated error:
�wij(t+1) =1rate.oj(1-oj).Errj .oi+momentum.�wij(t)

BB2. Calculate the error Erri for neurons i in the intermediate layer:
Erri =

∑
Errj .wij

BB3. Propagate the error back to the neurons k of lower level:
�wki(t+1) =1rate.oi(1-oi).Erri .xk +momentum.�wki(t)

Fig. 3.1 The backpropagation algorithm (BP) for training a multilayer perceptron (MLP) (Amari, 1967; Rumelhart
et al., 1986; Werbos, 1990) (from Kasabov (1996), MIT Press, reproduced with permission).

data pair �x� y� is presented, the system optimises its functioning always in a local
vicinity of x from the input space X, and in the local vicinity of y from the output
space Y (Saad, 1999).

3.1.3 Radial Basis Function (RBF) Connectionist Methods

Several connectionist methods for incrementally adaptive and knowledge-based
learning use principles of the radial basis function (RBF) networks (Moody and
Darken, 1988, 1989). The basic architecture is outlined here along with its modifi-
cations for constructive, incrementally adaptive learning.

The RBF network consists of three layers of neurons—input layer, radial basis
layer, and output layer—as shown in Fig. 3.2. The radial basis layer represents
clustering of the training data and is established through a clustering method.
The second layer of connections is tuned through the delta rule for a global error
through multiple iterations over the training data.

The input nodes are fully connected to the neurons in the second layer. A
hidden node has a radial basis function as an activation function. The RBF is a
symmetric function (e.g. Gaussian, belllike):

f�x� = exp�−�x−M�2/2�2	 (3.3)

where M and � are two parameters meaning the mean and the standard deviation
of the input vector x� For a particular node i, its RBF fi is centred at the cluster
centre Ci in the n-dimensional input space. The cluster centre Ci is represented by
the vector (w1i � � � � �wni� of connection weights between the n input nodes and the
hidden node i. The standard deviation for this cluster defines the range for the

86 Evolving Connectionist Systems

Y1 Y2
(Linear output function)

(Gaussian activation function)

X1 X2 X3

................

Fig. 3.2 General structure of an RBF network.

RBF fi. The RBF is nonmonotonic, in contrast to the sigmoid function used in the
MLP networks.

The second layer is connected to the output layer. The output nodes perform a
simple summation function with a linear thresholding activation function.

Training of a RBFN consists of two phases:

• Adjusting the RBFs of the hidden neurons by applying a statistical clustering
method; this represents an unsupervised learning phase.

• Applying gradient descent (e.g. the backpropagation algorithm) or a linear
regression algorithm for adjusting the second layer of connections; this is a
supervised learning phase.

During training, the following parameters of the RBFN are adjusted.

• The n-dimensional position of the centres Ci of the RBFi. This can be achieved by
using the k-means clustering algorithm, for example, which finds a predefined
number of hidden nodes (cluster centres and shape of the Gaussian function)
that minimize the average distance between the training examples and the k-
nearest centres.

• The weights of the second layer connections.

The recall procedure for the RBF network calculates the activation of the hidden
nodes that represent how close an input vector x is to the centres Ci. The activation
value of the closest node is propagated to the output layer.

Several methods for incrementally adaptive and constructive training of RBF
networks exist. Such is the extended growing cell structure (GCS) method (see
Chapter 2) called the supervised growing cell structure network (Fritzke, 1995).
The method applies the growing cell algorithm on the radial basis nodes in a RBF
network. The second layer of connections is tuned through the delta rule in an
incrementally adaptive mode.

In Blanzieri and Katenkamp (1996) an algorithm for incrementally adaptive
learning in RBF networks is presented which utilises a factorisable RBF network
(F-RBFN) introduced by Poggio and Girosi (1990). Fig. 3.3 shows the structure of

Evolving Connectionist Methods for Supervised Learning 87

X1

X2

Product Unit

Output Unit

Gaussian Unit

Fig. 3.3 Factorizable RBF network.

the F-RBFN. The RBF are not ‘located’ in the whole n-dimensional space, but on
the local one-variable space for each input variable.

3.1.4 The Resource Allocation Network (RAN) Model

The resource allocation network (RAN) model was suggested by Platt (1991) and
improved in other related methods presented in this section. RAN uses the same
architecture as the RBF networks, but both the clustering and the second layer
adjustment are performed in a two-pass incrementally adaptive mode. A RAN
model allocates a new neuron for a new input example �x� y� if the input vector x is
not sufficiently close to any of the already allocated radial basis neurons (centres),
and also if the output error evaluation (y −y′), where y′ is the output produced by
the system for the input vector x, is above an error threshold. Otherwise, centres
will be adapted to minimize the error for the example (x� y) through a gradient
descent algorithm.

Some versions of RAN have been developed by Rosipal et al. (1997; RAN-GRD
and RAN-P-GQRD). Some of these methods are used in this and the next chapters
for a comparative analysis of the performance of different incrementally adaptive
learning methods.

3.1.5 The Receptive Field Weighted Regression Method (RFWR)

The receptive field weighted regression method (RFWR) is a connectionist-
regression technique that uses a regression formula in the form of a weighted
sum of local receptive fields learned in local neurons (Schaal and Atkeson, 1998).
Through learning, the receptive fields change their size and shape, but not their
centre, once it is established. During learning the regression formula changes
the weighting of the input variables for the purpose of incremental function
approximation.

88 Evolving Connectionist Systems

A schematic diagram of the RFWR model is given in Fig. 3.4. Each receptive
field is learned in a kernel function unit (this is a Gaussian function) and in a
linear unit.

A predicted output value y′ for an input vector x is calculated based on the
following formula,

y′ =∑
k=1�K

�wk a′
k�/
∑

k=1�K
�wk� (3.4)

where wk is the weight of the kth receptive field learned through the learning
procedure, and a ′

k is the activation of the kth receptive field for the input vector x.
An example of how the receptive fields change during the learning process of a

complex function is shown in Fig. 3.5. Data examples are generated in a random
manner from the following function of two variables x and y.

z = max � exp�−10x2�� exp�−50y2�� 1�25 exp�−5�x2 +y2��
+N�0� 0�01� (3.5)

in a package of 500 examples used for one training iteration in an incrementally
adaptive mode. As test data, 1681 data points are drawn from the function space
and their output values are evaluated by the trained RFWR model. Figure 3.5
shows: (a) the target function; (b) the approximated function after 50 iterations
of training the RFWR model; (c) receptive fields of the generated nodes after
one epoch of training (that includes 500 randomly drawn examples) shown in
the original input space; and (d) the receptive fields after 50 epochs of training
(each epoch includes 500 randomly drawn examples from the function space).
The centres of the receptive fields do not change once they are established in an
incremental way. The small dots represent data examples drawn from the input
space of the above function.

Y

Weighted Average

Gaussian Unit
........

Linear Unit

X1 X2 X3

Fig. 3.4 The architecture of the receptive field weight regression network model (RFWR) (see Shaal and Atkeson
(1998)).

Evolving Connectionist Methods for Supervised Learning 89

a)

c)

b)

d)

Fig. 3.5 An example of how the receptive fields change during an incremental learning process of a complex
function: (a) the original function; (b) the learned in the model function; (c) receptive fields at the beginning
of the learning process with a small number of examples; (d) receptive fields after more examples are added
(from Schaal and Atkeson (1998); reproduced with permission).

RFWR methods are similar to the mixture of experts methods (Jordan and
Jacobs, 1994) as each receptive field here represents one ‘local expert’. All receptive
fields cover the function under approximation. The system can cope with the
changing dynamics of the function and changing probability distribution over time
through creating new receptive fields and pruning old ones in an incremental way.

3.1.6 FuzzyARTMAP

FuzzyARTMAP (Carpenter et al., 1991) is an incremental learning connectionist
model that associates fuzzy clusters from an input space with an output space.
It consists of two parts – FuzzyARTa, and FuzzyARTb – each of them being
type ART2 networks that deal with fuzzy input features and fuzzy outputs (see
Fig. 3.6). At each time of the learning process, rules that associate input patterns
with output classes can be extracted from a FuzzyARTMAP network. A map field
maps the activated node in ARTa with the desired output node from ARTb. The
mapping process for each input–output training pair is iterative.

90 Evolving Connectionist Systems

Map Field

Competition

Input Features Desired/Produced Output

F2
a

F1
a

F2
b

F1
b

Fab

Fig. 3.6 A schematic diagram of a FuzzyARTMAP network.

3.1.7 Lifelong Learning Cell Structures

Some methods, such as the lifelong learning cell structures (Hamker, 2001),
combine self-organized unsupervised learning in the input space with error-driven
learning in the output space whereas the nodes in the first area are not restricted
in numbers nor in their position in the input space. Such systems can grow
‘forever’ and pruning is also involved to remove the ‘old,’ and not ‘useful’ nodes
from the input space.

Figure 3.7 illustrates the idea of the lifelong learning cell structure. Each node in
the self-organised area has several parameters attached to it: centre and width of
the Gaussian activation functions associated with the node, error counter, inherited
error, insertion threshold, and age. These parameters are used in the evolving
algorithm that defines when a node should be considered as sufficiently activated,
how to link this node with the neighbouring nodes, how to update these links (see
ESOM for a similar approach, Chapter 2), when to create a new node, when to
prune a node, and so on.

Inputs
Outputs

Self-organized growing area

Error-driven weights

X

X1

X2

Y

Fig. 3.7 A schematic diagram of a life-long learning cell structure.

Evolving Connectionist Methods for Supervised Learning 91

3.2 Simple Evolving Connectionist Methods

3.2.1 Simple Evolving MLP and RBF

A representative of this class of methods and systems is ZISC (the Zero Instruction
Set Computer) (ZISC Manual, 2001). ZISC is a supervised learning system in a
chip that realises a growing RBF network. Each hidden node has a receptive field
that is initially maximally large. A node is linked to an output class of yes/no type
depending on the example that is presented. If during the learning process a new
example is close to this node but belongs to another class, the radius of the field
of this node is reduced to exclude this example and a new node is created. The
distance between a new example and all nodes is computed in parallel.

Another simple evolving MLP method is called here eMLP and presented in
Fig. 3.8 as a simplified graphical representation. An eMLP consists of three layers
of neurons, the input layer, with linear or other transfer functions, an evolving
layer, and an output layer with a simple saturated linear activation function. It
is a simplified version of the evolving fuzzy neural network (EFuNN), presented
later in this chapter (Kasabov, 2001).

The evolving layer is the layer that will grow and adapt itself to the incoming
data, and is the layer with which the learning algorithm is most concerned.
The meaning of the incoming connections, activation, and forward propagation
algorithms of the evolving layer all differ from those of classical connectionist
systems.

If a linear activation function is used, the activation A of an evolving layer node
n is determined by Eq. (3.6),

An = 1−Dn (3.6)

where An is the activation of the node n and Dn is the normalised distance between
the input vector and the incoming weight vector for that node.

Fig. 3.8 A block diagram of a simple evolving MLP (eMLP).

92 Evolving Connectionist Systems

Other activation functions, such as a radial basis function could be used. Thus,
examples which exactly match the exemplar stored within the neurons’ incoming
weights will result in an activation of 1 whereas examples that are entirely outside
the exemplars region of input space will result in an activation of near 0.

The preferred form learning algorithm is based on accommodating, within the
evolving layer, new training examples by either modifying the connection weights
of the evolving layer nodes, or by adding a new node. The algorithm employed is
described below.

Box 3.1. eMLP learning algorithm

1. Propagate the input vector I through the network.
IF the maximum activation Amax of a node is less than a coefficient called
sensitivity threshold Sthr :

2. Add a node, ELSE
3. Evaluate the error between the calculated output vector Oc and the desired

output vector Od .
4. IF the error is greater than an error threshold Ethr OR the desired output

class node is not the most highly activated,
5. Add a node, ELSE
6. Update the connections to the winning node in the evolving layer.
7. Repeat the above procedure for each training vector.

When a node is added, its incoming connection weight vector is set to the input
vector I , and its outgoing weight vector is set to the desired output vector Od .

The incoming weights to the winning node j are modified according to Eq. (3.7),
whereas the outgoing weights from node j are modified according to Eq. (3.8)

Wi�j�t +1� = Wi�j�t�+�1�Ii −Wi�j�t�� (3.7)

where:

Wi�j�t�is the connection weight from input i to j at time t
Wi�j�t +1� is the connection weight from input i to j at time t +1
�1 is the learning rate one parameter
Ii is the ith component of the input vector I

Wj�p�t +1� = Wj�p�t�+�2�Aj ×Ep� (3.8)

where:

Wj�p�t� is the connection weight from j to output p at time t
Wi�p�t +1� is the connection weight from j to p at time t +1
�2 is the learning rate two parameter
Aj is the activation of a node j

Ep = Od�p� −Oc�p� (3.9)

Evolving Connectionist Methods for Supervised Learning 93

where Ep is the error at p; Od�p� is the desired output at p; and Oc�p� is the calculated
output at p.

The distance measure Dn in Eq. (3.6) above is preferably calculated as the
normalised Hamming distance, as shown in Eq. (3.10):

Dn =
K∑

i
�Ii −Wi�

K∑

i
�Ii +Wi�

(3.10)

where K is the number of input nodes in the eMLP, I is the input vector, and W
is the input to the evolving layer weight matrix.

The eMLP architecture is similar to the Zero Instruction Set Computer archi-
tecture. However, ZISC is based on RBF ANN and requires several training itera-
tions over input data.

Aggregation of nodes in the evolving layer can be employed to control the size
of the evolving layer during the learning process. The principle of aggregation is
to merge those nodes which are spatially close to each other. Aggregation can be
applied for every (or after every n� training example. It will generally improve the
generalisation capability of eMLP. The aggregation algorithm is as follows.

FOR each rule node rj � j = 1 � n� where n is the number of nodes in the evolving
layer and W1 is the connection weight matrix between the input and evolving layer
and W2 is the connection weight matrix between the evolving and output layer.

• Find a subset R of nodes in the evolving layer for which the normalised Euclidean
distances D�W1rj�W1ra� and D�W2rj�W2ra�rj� ra ∈ R are below a threshold Wthr .

• Merge all the nodes from the subset R into a new node rnew and update W1rnew

and W2rnew
using the following formulas,

W1rnew
=
∑

ra ∈ R�W1ra
�

m
(3.11)

W2rnew
=
∑

ra ∈ R�W2ra
�

m
(3.12)

where m denotes the number of nodes in the subset R.
• Delete the nodes ra ∈ R.

Node aggregation is an important regularisation that is not present in ZISC. It is
highly desirable in some application areas, such as speech and image recognition
systems. In speech recognition, the vocabulary of recognition systems needs to be
customised to meet individual needs. This can be achieved by adding words to the
existing recognition system or removing words from the existing vocabulary.

eMLP is also suitable for online output space expansion because it uses local
learning which tunes only the connection weights of the local node, so all the
knowledge that has been captured in the nodes in the evolving layer will be
local and only covering a ‘patch’ of the input–output space. Thus, adding new
class outputs or new input variables does not require retraining of the whole

94 Evolving Connectionist Systems

system on both the new and old data as is required for traditional neural
networks.

The task is to introduce an algorithm for online expansion and reduction of the
output space in eMLP. As described above the eMLP is a three-layer network with
two layers of connections. Each node in the output layer represents a particular
class in the problem domain when using eMLP as a classifier. This local represen-
tation of nodes in the evolving layer enables eMLP to accommodate new classes
or remove an already existing class from its output space.

In order to add a new node to the output layer, the structure of the existing eMLP
first needs to be modified to encompass the new output node. This modification
affects only the output layer and the connections between the output layer and the
evolving layer. The graphical representation of this process is shown in Fig. 3.8. The
connection weights between the new output in the output layer and the evolving
layer are initialised to zero (the dotted line in Fig. 3.8.). In this manner the new
output node is set by default to classify all previously seen classes as negative. Once
the internal structure of the eMLP is modified to accommodate the new output
class, the eMLP is further trained on the new data. As a result of the training
process new nodes are created in the evolving layer to represent thenew class.

The process of adding new output nodes to eMLP is carried out in a supervised
manner. Thus, for a given input vector, a new output node will be added only if
it is indicated that the given input vector is a new class. The output expansion
algorithm is as follows.

FOR every new output class:

1. Insert a new node j into the output layer;
2. FOR every node in the evolving layer ri� i = 1 � n, where n is the number of

nodes in the evolving layer, modify the outgoing connection weights W2 from
the evolving to output layer by expanding W2i�j with set of zeros to reflect the
zero output.

3. Insert a new node in the evolving layer to represent the new input vector and
connect it to the new output node j.

This is equivalent to allocating a part of the problem space for data that belong to
new classes, without specifying where this part is in the problem space.

It is also possible to remove a class from an eMLP. It only affects the output
and evolving layer of eMLP architecture:

FOR every output class o to be removed,

1. Find set of nodes S in the evolving layer which are connected to that output o.
2. Modify the incoming connections W1 from input layer to evolving layer by

deleting Si� i = 1 � n, where n is the number of nodes in the set S connected to
output o.

3. Modify the outgoing connection weights W2 from the evolving to output layer
by deleting output node o.

The above algorithm is equivalent to deallocating a part of the problem space
which had been allocated for the removed output class. In this manner, there will
be no space allocated for the deleted output class in the problem space. In other
words the network is unlearning a particular output class. The eMLP is further
studied and applied in Watts and Kasabov (2002) and Watts (2006).

Evolving Connectionist Methods for Supervised Learning 95

3.2.2 Evolving Classification Function (ECF)

Another simple evolving connectionist method for classification is the evolving
classifier function ECF presented here (see Fig. 3.9). The learning and the recall
algorithms of ECF are shown in Box 3.2. Internal nodes in the ECF structure
capture clusters of input data that belong to a same class. For each input variable
there are fuzzy membership functions define as in Fig. 2.2

Box 3.2a. Learning algorithm of ECF:

1. Enter the current input vector from the dataset (stream) and calculate the
distances between this vector and all nodes already evolved (rule) using
Euclidean distance (by default). If there is no node created, create the first
one that has the co-ordinates of the first input vector attached as input
connection weights.

2. If all calculated distances between the new input vector and the existing rule
nodes are greater than a max-radius parameter Rmax, a new rule node is
created. The position of the new rule node is the same as the current vector
in the input data space and the radius of its receptive field is set to the
min-radius parameter Rmin; the algorithm goes to step 1; otherwise it goes
to the next step.

3. If there is a rule node with a distance to the current input vector less than
or equal to its radius and its class is the same as the class of the new vector,
nothing will be changed; go to step 1; otherwise:

4. If there is a rule node with a distance to the input vector less than or equal to
its radius and its class is different from that of the input vector, its influence
field should be reduced. The radius of the new field is set to the larger value
from the two numbers: distance minus the min-radius; min-radius. New
node is created as in step 2 to represent the new data vector.

5. If there is a rule node with a distance to the input vector less than or equal
to the max-radius, and its class is the same as that of the input vector’s,
enlarge the influence field by taking the distance as a new radius only if
such enlarged field does not cover any other rule nodes which belong to a
different class; otherwise, create a new rule node in the same way as in step
2, and go to step 1.

Box 3.2.b Recall procedure (classification of a new input vector)
in a trained ECF:

1. Enter the new vector in the ECF trained system; if the new input vector lies
within the field of one or more rule nodes associated with one class, the
vector is classified in this class;

96 Evolving Connectionist Systems

2. If the input vector lies within the fields of two or more rule nodes associated
with different classes, the vector will belong to the class corresponding to
the closest rule node.

3. If the input vector does not lie within any field, then take m highest activated
by the new vector rule nodes, and calculate the average distances from the
vector to the nodes with the same class; the vector will belong to the class
corresponding to the smallest average distance.

Two main characteristics of ECF are demonstrated in the following example that
uses the Iris case study data set.

• Incrementally adaptive learning
• Rule/knowledge extraction

Example

Figure 3.10 shows: (a) an ECF model trained on 90% of the Iris data (135 samples)
creating 18 clusters (rules), and afterwards adapted incrementally to the other 10%
of data (class 3 only, 15 samples), updating the rules and creating a new one, #19;
(b) the 19 rules that represent the adapted 18 clusters of data from the first 90%
of the Iris data and the new rule, #19.

.

.

.

.

.

.

.

.

.

x1

x2

xn

r1

r2

rk

Class1

Class2

Input
nodes

Fuzzy
member
nodes Rule nodes

Output nodes

Fig. 3.9 A simplified structure of an evolving classifier function ECF. For every input variable different number
and type of fuzzy membership functions can be defined or evolved see Fig. 2.2.

Evolving Connectionist Methods for Supervised Learning 97

Fig. 3.10 (a) An ECF model trained on 90% of the Iris data (135 samples) creating 18 clusters (rules), and
afterwards adapted incrementally to the other 10% of data (class 3 only, 15 samples), updating the rules and
creating a new one, #19; (Continued overleaf)

3.3 Evolving Fuzzy Neural Networks (EFuNN)

Fuzzy neural networks are connectionist structures that can be interpreted in terms
of fuzzy rules (Yamakawa et al., 1992; Furuhashi et al., 1993; Lin and Lee, 1996;
Kasabov, 1996). Fuzzy neural networks are NN, with all the NN characteristics
of training, recall, adaptation, and so on, whereas neuro-fuzzy inference systems
(Chapter 5) are fuzzy rule-based systems and their associated fuzzy inference
mechanisms that are implemented as neural networks for the purpose of learning
and rule optimisation. The evolving fuzzy neural network (EFuNN) presented
here is of the former type, whereas the HyFIS and DENFIS systems presented in
Chapter 5 are of the latter type. Some authors do not separate the two types that
make the transition from one to the other type more flexible and also broaden the
interpretation and the application of each of these systems.

3.3.1 The EFuNN Architecture

EFuNNs have a five-layer structure (Fig. 3.11). Here nodes and connections are
created/connected as data examples are presented. An optional short-term memory
layer can be used through a feedback connection from the rule (also called case)

98 Evolving Connectionist Systems

Rule 1:
if

X1 is (1: 0.75)
X2 is (2: 0.61)
X3 is (1: 0.89)
X4 is (1: 0.92)

then Class is [1]
Radius = 0.240437 , 50 in Cluster
Rule 2: if

X1 is (2: 0.73)
X2 is (1: 0.50)
X3 is (2: 0.62)
X4 is (2: 0.54)

then Class is [2]
Radius = 0.102388 , 10 in Cluster
Rule 3:
if

X1 is (1: 0.65)
X2 is (1: 0.84)
X3 is (2: 0.51)
X4 is (1: 0.50)

then Class is [2]
Radius = 0.107233 , 15 in Cluster
Rule 4:
if

X1 is (1: 0.55)
X2 is (1: 0.58)
X3 is (2: 0.54)
X4 is (2: 0.58)

then Class is [2]
Radius = 0.073327 , 17 in Cluster
Rule 5:
if

X1 is (1: 0.80)
X2 is (1: 0.80)
X3 is (1: 0.60)
X4 is (1: 0.61)

then Class is [2]
Radius = 0.078333 , 3 in Cluster
Rule 6: if

X1 is (1: 0.55)
X2 is (1: 0.50)
X3 is (2: 0.63)
X4 is (2: 0.69)

then Class is [2]
Radius = 0.038928 , 1 in Cluster
Rule 7:
if

X1 is (2: 0.55)
X2 is (1: 0.77)

X3 is (2: 0.65)
X4 is (2: 0.58)

then Class is [2]
Radius = 0.057870 , 1 in Cluster
Rule 8:
if

X1 is (1: 0.50)
X2 is (1: 0.65)
X3 is (2: 0.62)
X4 is (1: 0.54)

then Class is [2]
Radius = 0.010000 , 1 in Cluster
Rule 9:
if

X1 is (1: 0.53)
X2 is (1: 0.69)
X3 is (2: 0.68)
X4 is (2: 0.61)

then Class is [2]
Radius = 0.010000 , 1 in Cluster
Rule 10:
if

X1 is (1: 0.53)
X2 is (2: 0.58)
X3 is (2: 0.58)
X4 is (2: 0.61)

then Class is [2]
Radius = 0.010000 , 1 in Cluster
Rule 11:
if

X1 is (2: 0.55)
X2 is (2: 0.54)
X3 is (2: 0.82)
X4 is (2: 0.95)

then Class is [3]
Radius = 0.169390 , 20 in Cluster
Rule 12:
if

X1 is (1: 0.80)
X2 is (1: 0.77)
X3 is (2: 0.58)
X4 is (2: 0.65)

then Class is [3]
Radius = 0.089745 , 1 in Cluster
Rule 13:
if

X1 is (1: 0.58)
X2 is (1: 0.69)
X3 is (2: 0.68)
X4 is (2: 0.73)

then Class is [3]
Radius = 0.061177 , 4 in Cluster
Rule 14:
if

X1 is (2: 0.88)
X2 is (1: 0.58)
X3 is (2: 0.91)
X4 is (2: 0.80)

then Class is [3]
Radius = 0.170023 , 11 in Cluster
Rule 15:
if

X1 is (1: 0.53)
X2 is (1: 0.88)
X3 is (2: 0.66)
X4 is (2: 0.58)

then Class is [3]
Radius = 0.045060 , 1 in Cluster
Rule 16:
if

X1 is (2: 0.58)
X2 is (1: 0.69)
X3 is (2: 0.71)
X4 is (2: 0.73)

then Class is [3]
Radius = 0.076566 , 10 in Cluster
Rule 17:
if

X1 is (1: 0.50)
X2 is (1: 0.73)
X3 is (2: 0.75)
X4 is (2: 0.54)

then Class is [3]
Radius = 0.010000 , 1 in Cluster
Rule 18:
if

X1 is (2: 0.55)
X2 is (1: 0.65)
X3 is (2: 0.68)
X4 is (2: 0.58)

then Class is [3]
Radius = 0.010000 , 1 in Cluster
Rule 19:
if

X1 is (1: 0.53)
X2 is (1: 0.58)
X3 is (2: 0.63)
X4 is (2: 0.69)

then Class is [3]
Radius = 0.010000 , 1 in Cluster

Fig. 3.10 (continued) (b) The 19 rules that represent the adapted 19 clusters of data, obtained after further
training of the ECF model from Fig. 2.10a on the other 10% of the Iris data. Rule #19 is a new one, as a new
cluster #19 was created as a result of the adaptation of the model from (a) to the new 10% of the data. The
cluster centers in each rule are defined by the membership degree (between 0 and 1) to which each variable
belongs to a fuzzy membership function (here “1” indicates small value, and “2” indicates large value fuzzy
membership function.

Evolving Connectionist Methods for Supervised Learning 99

inputs
output

rule(case)
nodes

Fig. 3.11 Evolving fuzzy neural network EFuNN: an example of a simplified standard feedforward EFuNN system
(from Kasabov (2001a,b), PCT patent WO 01/78003).

node layer (see Fig. 3.12). The layer of feedback connections could be used if
temporal relationships of input data are to be memorized structurally.

The input layer represents input variables. The second layer of nodes (fuzzy
input neurons or fuzzy inputs) represents fuzzy quantisation of each input variable
space (similar to the ECF model and to the factorisable RBF networks; see
Section 3.1). For example, two fuzzy input neurons can be used to represent ‘small’
and ‘large’ fuzzy values. Different membership functions (MF) can be attached to
these neurons (triangular, Fig. 2.2, Fig. 3.13, Gaussian, etc.).

The number and the type of MF can be dynamically modified. The task of
the fuzzy input nodes is to transfer the input values into membership degrees to
which they belong to the corresponding MF. The layers that represent fuzzy MF
are optional, as a nonfuzzy version of EFuNN can also be evolved with only three
layers of neurons and two layers of connections as in the eMLP and also used in
Chapter 6.

The third layer contains rule (case) nodes that evolve through supervised and/or
unsupervised learning. The rule nodes represent prototypes (exemplars, clusters) of
input–output data associations that can be graphically represented as associations
of hyperspheres from the fuzzy input and the fuzzy output spaces. Each rule
node r is defined by two vectors of connection weights, W1�r� and W2�r�, the
latter being adjusted through supervised learning based on the output error, and

(t-1)

x1 x2

W1

W2

W3

W4

rmax
(t)

rmax

A1
(t-1)

A1
(t)

W0

Outputs

Fuzzy outputs

Rule (base)
layer

Fuzzy input
layer

Input
layer

Inputs

Fig. 3.12 An example of an EFuNN with a short-term memory realised as a feedback connection (from Kasabov
(2001a,b), PCT patent WO 01/78003).

100 Evolving Connectionist Systems

d1f = (0, 0, 1, 0, 0, 0)
d2f = (0, 1, 0, 0, 0, 0)

R = 1–S
The local normalised
fuzzy distance

d4 d2 d1

µ (membership degree)

x

D(d1,d2) = D(d1,d3) = D(d1,d5) = 1

d3 d5

Fig. 3.13 Triangular membership functions (MF) and the local, normalised, fuzzy distance measure (from
Kasabov (2001a,b)).

the former being adjusted through unsupervised learning based on a similarity
measure within a local area of the problem space. A linear activation function, or
a Gaussian function, is used for the neurons of this layer.

The fourth layer of neurons represents fuzzy quantisation of the output variables,
similar to the input fuzzy neuron representation. Here, a weighted sum input
function and a saturated linear activation function is used for the neurons to
calculate the membership degrees to which the output vector associated with the
presented input vector belongs to each of the output MFs. The fifth layer represents
the values of the output variables. Here a linear activation function is used to
calculate the defuzzified values for the output variables.

A partial case of EFuNN would be a three-layer network without the fuzzy input
and the fuzzy output layers (e.g. eMLP, or an evolving simple RBF network). In
this case slightly modified versions of the algorithms described below are applied,
mainly in terms of measuring Euclidean distance and using Gaussian activation
functions.

The evolving learning in EFuNNs is based on either of the following assumptions:

1. No rule nodes exist prior to learning and all of them are created (generated)
during the evolving process; or

2. There is an initial set of rule nodes that are not connected to the input and
output nodes and become connected through the learning (evolving) process.
The latter case is more biologically plausible as most of the neurons in the
human brain exist before birth, and become connected through learning, but
still there are areas of the brain where new neurons are created during learning
if ‘surprisingly’ different stimuli from those previously seen are presented. (See
Chapter 1 for biological inspirations of ECOS.)

The EFuNN evolving algorithm presented next does not differentiate between these
two cases.

Each rule node, for example, rj, represents an association between a hypersphere
from the fuzzy input space and a hypersphere from the fuzzy output space (see
Fig. 3.14), the W1�rj� connection weights representing the co-ordinates of the
centre of the sphere in the fuzzy input space, and the W2 (rj� the co-ordinates
in the fuzzy output space. The radius of the input hypersphere of a rule node rj

Evolving Connectionist Methods for Supervised Learning 101

Yf
W2 yf

rj
(1) rj

(2)

Xf

W1
xf

rj
 (1) rj

(2)

Rj

Fig. 3.14 Adaptive learning in EFuNN: a rule node represents an association of two hyperspheres from the fuzzy
input space and the fuzzy output space; the rule node rj ‘moves’ from a position r

�1�
j to r

�2�
j to accommodate

a new input–output example (xf , yf) (from Kasabov (2001a,b)).

is defined as Rj = 1 − Sj, where Sj is the sensitivity threshold parameter defining
the minimum activation of the rule node rj to a new input vector x from a new
example (x� y) in order for the example to be considered for association with this
rule node.

The pair of fuzzy input–output data vectors (xf � yf) will be allocated to the
rule node rj if xf falls into the rj input receptive field (hypersphere), and yf
falls in the rj output reactive field hypersphere. This is ensured through two
conditions: that a local normalised fuzzy difference between xf and W1�rj� is
smaller than the radius Rj, and the normalised output error Err = ��y−y′��/Nout is
smaller than an error threshold E. Nout is the number of the outputs and y′ is the
produced by EFuNN output. The error parameter E sets the error tolerance of the
system.

Definition

A local normalised fuzzy distance between two fuzzy membership vectors d1f and
d2f that represent the membership degrees to which two real-value vector data d1
and d2 belong to predefined MFs, is calculated as

D�d1f � d2f � = ��d1f − d2f ��/��d1f + d2f �� (3.13)

where ��x−y�� denotes the sum of all the absolute values of a vector that is obtained
after vector subtraction (or summation in case of ��x +y��) of two vectors x and y;

102 Evolving Connectionist Systems

/ denotes division. For example, if d1f = �0� 0� 1� 0� 0� 0� and d2f = �0� 1� 0� 0� 0� 0�, then
D�d1� d2� = �1 + 1�/2 = 1, which is the maximum value for the local normalised
fuzzy difference (see Fig. 3.13). In EFuNNs the local normalised fuzzy distance is
used to measure the distance between a new input data vector and a rule node in
the local vicinity of the rule node.

In RBF networks Gaussian radial basis functions are allocated to the nodes and
used as activation functions to calculate the distance between the node and the
input vectors.

Through the process of associating (learning) of new data points (vectors) to a
rule node rj, the centres of this node’s hyperspheres adjust in the fuzzy input space
depending on the distance between the new input vector and the rule node through
a learning rate lj, and in the fuzzy output space depending on the output error
through the Widrow–Hoff least mean square (LMS) delta algorithm (Widrow and
Hoff, 1960). This adjustment can be represented mathematically by the change in
the connection weights of the rule node rj from W1�r

�t�
j � and W2�r

�t�
j � to W1�r

�t+1�
j �

and W2�r
�t+1�
j �, respectively, employing the following vector operations.

W1�rj
�t+1�� = W1�rj

�t��+ lj��xf −W1�rj
�t��� (3.14)

W2�rj
�t+1�� = W2�rj

�t��+ lj��yf −A2��A1�rj
�t��

where A2 = f2�W2�A1� is the activation vector of the fuzzy output neurons in
the EFuNN structure when x is presented; A1�r

�t�
j � = f2�D�W1�r

�t�
j �� xf �� is the

activation of the rule node r
�t�
j ; a simple linear function can be used for f1 and f2;

for example, A1�r
�t�
j � = 1 − D�W1�r

�t�
j �� xf ��; lj is the current learning rate of the

rule node rj calculated, for example, as lj = 1/Nex�rj�, where Nex�rj� is the number
of examples currently associated with rule node rj.

The statistical rationale behind this is that the more examples are currently
associated with a rule node, the less it will ‘move’ when a new example has to be accom-
modated by this rule node; that is, the change in the rule node position is propor-
tional to the number of already associated examples with the new single example.

When a new example is associated with a rule node rj not only its location in
the input space changes, but also its receptive field expressed as its radius Rj, and
its sensitivity threshold Sj:

Rj�t+1� = Rj�t� +D�W1�rj�t+1���W1�rj�t��� (3.15)

respectively,

Sj�t+1� = Sj�t� −D�W1�rj�t+1���W1�rj�t��� (3.16)

The learning process in the fuzzy input space is illustrated in Fig. 3.15 on four data
points d1, d2, d3� and d4. Figure 3.15 shows how the centre r

�1�
j of the rule node

rj adjusts (after learning each new data point) to its new positions r
�2�
j ,r�3�

j , r
�4�
j

when one-pass learning is applied. Figure 3.16 shows how the rule node position
would move to new positions r

�2�2�
j , r

�3�2�
j , and r

�4�2�
j , if another pass of learning

Evolving Connectionist Methods for Supervised Learning 103

rj
(4)

Rj=1–Sj

d1

d2 d3

d4

rj
 (1)

Fig. 3.15 Evolving adaptive learning in EFuNN illustrated on the example of learning four new input data
vectors (points) in a rule node rj (from Kasabov (2001a,b)).

were applied. If the two learning rates l1and l2have zero values, once established,
the centres of the rule nodes will not move.

The weight adjustment formulas (3.14) define the standard EFuNN that has the
first part updated in an unsupervised mode, and the second part in a supervised
mode similar to the RBF networks. But here the formulas are applied once for
each example (x� y) in an incrementally adaptive mode, that is similar to the RAN
model (Platt, 1991) and its modifications. The standard supervised/unsupervised
learning EFuNN is denoted EFuNN-s/u. In two other modifications of EFuNN,
namely double-pass learning EFuNN (EFuNN-dp), and gradient descent learning
EFuNN (EFuNN-gd), slightly different update functions are used as explained in
the next subsection.

The learned temporal associations can be used to support the activation of
rule nodes based on temporal pattern similarity. Here, temporal dependencies are
learned through establishing structural links. These dependencies can be further
investigated and enhanced through synaptic analysis (at the synaptic memory
level) rather than through neuronal activation analysis (at the behavioural level).
The ratio spatial similarity/temporal correlation can be balanced for different

d1

d2
d3

d4

rj
 (1(1)

rj
 (4(1)

rj (4(2)

Fig. 3.16 Two-pass learning of four input data vectors (points) that fall in the receptive and the reactive fields
of the rule node rj (from Kasabov (2001a,b)).

104 Evolving Connectionist Systems

applications through two parameters Ss and Tc such that the activation of a rule
node r for a new data example dnew is defined through the following vector
operations.

A1�r� = �1−Ss�D�W1�r�� dnewf �+Tc�W3�rmax
�t−1�� r���0�1	 (3.17)

where ����0�1	 is a bounded operation in the interval [0,1]; D�W1�r��dnewf � is the
normalised local fuzzy distance value and rmax

�t−1�is the winning neuron at the
previous time moment. Here temporal connections can be given a higher impor-
tance in order to tolerate a higher distance. If Tc = 0, then temporal links are
excluded from the functioning of the system.

Figure 3.17 shows a schematic diagram of the process of evolving of three rule
nodes and setting the temporal links between them for data taken from consecutive
frames of a spoken word ‘eight’ similar to HMM – see chapter 1.

The EFuNN system was explained thus far with the use of one-rule node
activation (the winning rule node for the current input data). The same formulas
are applicable when the activation of m rule nodes is propagated and used (the
so-called ‘many-of-n’ mode, or ‘m-of-n’ for short). By default, m = 3, but it is
subject to optimisation for different data sets.

The supervised learning in EFuNN is based on the above-explained principles,
so when a new data example d = �x�y� is presented, the EFuNN either creates a
new rule node rn to memorize the two input and output fuzzy vectors W1�rn� = xf

and W2�rn� = yf , or adjusts an existing rule node rj.
After a certain time (when a certain number of examples have been presented)

some neurons and connections may be pruned or aggregated.
Different pruning rules can be applied for a successful pruning of unnecessary

nodes and connections. One of them is given below:

IF (Age�rj� > OLD) AND (the total activation TA�rj� is less than a pruning parameter Pr
times Age (rj)) THEN prune rule node rj,

where Age(rj� is calculated as the number of examples that have been presented
to the EFuNN after rj have been first created; OLD is a predefined age limit; Pr is a
pruning parameter in the range [0,1], and the total activation TA(rj� is calculated

r2

/silence/

r3

r1

/ei/ /t/

W3(r2,r3)

W3(r1,r2)

Fig. 3.17 The process of creation of temporal connections from consecutive frames (vectors) taken from speech
data of a pronounced word ‘eight’. The three rule nodes represent the three major parts of the speech signal,
namely the phonemes /silence/, /ei/, /t/. The black dots represent data points (frame vectors) allocated to the
rule nodes (from Kasabov (2001a,b)).

Evolving Connectionist Methods for Supervised Learning 105

as the number of examples for which rj has been the correct winning node (or
among the m winning nodes in the m-of-n mode of operation).

The above pruning rule requires that the fuzzy concepts of OLD, HIGH, and so
on are defined in advance. As a partial case, a fixed value can be used; e.g. a node
is OLD if it has existed during the evolving process from more than p examples.
The pruning rule and the way the values for the pruning parameters are defined,
depend on the application task.

3.3.2 EFuNN Evolving Supervised Learning Rules and Algorithms

Three supervised learning algorithms are outlined here that differ in the weight
adjustment formulas.
(a) EFuNN-s/u Learning Algorithm

Set initial values for the system parameters: number of membership functions;
initial sensitivity threshold (default S = 0�9); error threshold E; aggregation
parameter Nagg, a number of consecutive examples after which an aggregation is
performed (explained in a later section); pruning parameters OLD and Pr; a value
for m (in m-of-n mode); thresholds T1 and T2for rule extraction.

Set the first rule node to memorize the first example (x�y):

W1�r0� = xf and W2�r0� = yf (3.18)

Loop over presentations of input–output pairs (x�y)
{
Evaluate the local normalised fuzzy distance D between xf and the existing rule
node connections W1 (formulas (3.5)).
Calculate the activation A1 of the rule node layer. Find the closest rule node rk (or
the closest m rule nodes in case of m-of-n mode) to the fuzzy input vector xf�

if A1(rk� < Sk(sensitivity threshold for the node rk�; create a new rule node for
(xf �yf �
else
Find the activation of the fuzzy output layer A2 = W2�A1 and the output error
Err = ��y −y′��/Nout.

if Err > E
create a new rule node to accommodate the current example (xf �yf �
else

Update W1�rk� and W2�rk� according to (3.4) (in the case of m-of-n EFuNN update
all the m rule nodes with the highest A1 activation).
Apply aggregation procedure of rule nodes after each group of Nagg examples is
presented.

Update the parameters Sk, Rk, Age(rk�, TA (rk� for the rule node rk.
Prune rule nodes if necessary, as defined by pruning parameters.

Extract rules from the rule nodes (as explained in a later subsection)
} End of the main loop.

The two other learning algorithms presented next are exceptions and if it is not
explicitly mentioned otherwise, the denotation EFuNN means EFuNN-s/u.

106 Evolving Connectionist Systems

(b) EFuNN-dp Learning Algorithm
This is different from the EFuNN-s/u in the weight adjustment formula for W2

that is a modification of (3.14) as follows.

W2�rj
�t+1�� = W2�rj

�t��+ lj��yf −A2�A1�r
�t+1�
j �� (3.19)

meaning that after the first propagation of the input vector and error Err calcu-
lation, if the weights are going to be adjusted, W1 weights are adjusted first with the
use of (3.14) and then the input vector x is propagated again through the already
adjusted rule node rj to its new position r

�t+1�
j in the input space, a new error Err

is calculated, and after that the W2 weights of the rule node rj are adjusted. This
is a finer weight adjustment than the adjustment in EFuNN-s/u that may make a
difference in learning short sequences, but for learning longer sequences it may
not cause any difference in the results obtained through the simpler and faster
EFuNN-s/u.
(c) EFuNN-gd Learning Algorithm

This algorithm is different from the EFuNN-s/u in the way the W1 connections
are adjusted, which is no longer unsupervised, but here a one-step gradient descent
algorithm is used similar to the RAN model (Platt, 1991):

W1�r
�t+1�
j � = W1�r

�t�
j �+ lj��xf −W1�r

�t�
j ���yf −A2�A1�r

�t�
j �W2�r

�t�
j � (3.20)

Formula (3.20) should be extended when the m-of-n mode is applied. The EFuNN-
gd algorithm is no longer supervised/unsupervised and the rule nodes are no
longer allocated at the cluster centres of the input space.

An important characteristic of EFuNN learning is the local element tuning. Only
one (or m, in the m-of-n mode) rule node will be either updated or created for
each data example. This makes the learning procedure very fast (especially in the
case when linear activation functions are used). Another advantage is that learning
a new data example does not cause forgetting of old ones. A third advantage is that
new input and new output variables can be added during the learning process, thus
making the EFuNN system more flexible to accommodate new information, once
such becomes available, without disregarding the already learned information.

The use of MFs and membership degrees (layer two of neurons), and also the
use of the normalised local fuzzy difference, makes it possible to deal with missing
values. In such cases, the fuzzy membership degree of all MFs will be 0.5 indicating
that the value, if it existed, may belong to any of them. Preference, in terms of
which fuzzy MF the missing value might belong to, can also be represented through
assigning appropriate membership degrees, e.g. 0.7 degrees to ‘Small’ means that
the value is more likely to be small rather than ‘Medium,’ or ‘Large.’

The supervised learning algorithms above allow for an EFuNN system to always
evolve and learn when a new input–output pair of data becomes available. This is
an active learning mode.
(d) EFuNN Sleep-Learning Rules

In another mode, passive or sleep learning, learning is performed when there is
no input pattern presented. This may be necessary to apply after an initial learning
has been performed. In this case existing connections that store previously fed
input patterns are used as an ‘echo’ to reiterate the learning process. This type
of learning may be applied in the case of a short initial presentation of the data,

Evolving Connectionist Methods for Supervised Learning 107

when only a small portion of data is learned in one-pass, incremental adaptive
mode, and then the training is refined through the sleep-learning method when
the system consolidates what it has learned before.

Sleep learning in EFuNN and in some other connectionist models is further
developed by Yamauchi and Hayami (2006).
(e) One- Pass Versus Multiple-Passes Learning

The best way to apply the above learning algorithms is to draw examples randomly
from the problem space, propagate them through the EFuNN and tune the connection
weights and the rule nodes, change and optimise the parameter values, and so on,
until the error becomes a desirably small one. In a fast learning mode, each example
is presented only once to the system. If it is possible to present examples two or more
times, the error may become smaller, but that depends on the parameter values of
the EFuNN and on the statistical characteristics of the data.

3.3.3 EFuNN Inference and Recall

The evolved EFuNN can perform inference when recalled on new input data. The
EFuNN inference method consists of calculating the output activation value when
a new input vector is applied. This is part of the EFuNN supervised learning
method when only an input vector x is propagated through the EFuNN. If the new
input vector falls in the receptive field of the winning rule node (the closest rule
node to the input vector) one-of-n mode of inference is used that is based on the
winning rule node activation (one rule inference). If the new input vector does
not fall in the receptive field of the closest to it rule node, then the m-of-n mode
is used, where m rule nodes (rules) are used in the EFuNN inference process, with
an usual value of m being 3.

3.3.4 Strategies for Allocating Rule Nodes in the EFuNN Rule
Node Space

There are different ways to allocate in a model space the EFuNN rule nodes evolved
over time as illustrated in Fig. 3.18 and explained below:

(a) A simple consecutive allocation strategy, i.e. each newly created rule (case)
node is allocated next to the previous, and to the following ones, in a linear
fashion. That represents a time order.

(b) Preclustered location, i.e. for each output fuzzy node (e.g. NO, YES) there
is a predefined location where the rule nodes supporting this predefined
concept are located. At the centre of this area the nodes that fully support this
concept (error 0) are placed; every new rule node’s location is defined based
on the fuzzy output error and the similarity with other nodes. In a nearest
activated node insertion strategy, a new rule node is placed nearest to the
highly activated node the activation of which is still less than its sensitivity
threshold. The side (left or right) where the new node is inserted is defined
by the highest activation of the two neighbouring nodes.

(c) As in (b) but temporal feedback connections are set as well. New connec-
tions are set that link consecutively activated rule nodes through using the
short-term memory and the links established through the W3 weight matrix;

108 Evolving Connectionist Systems

(a)

(b)

(c)

(d)

rule nodes

fuzzy output concepts

output

rule nodes

fuzzy output concepts

output

rule nodes

fuzzy output concepts

output

Fig. 3.18 Rule node allocation strategies: (a) simple consecutive allocation strategy; (b) a preclustered location;
(c) temporal feedback connections are evolved; (d) connections are evolved between rule nodes from different
EFuNN modules. For simplicity, only two membership functions (fuzzy output concepts) are used for the output
variable (from Kasabov (2001a,b,c)).

that will allow for the evolving system to react properly to a series of data
points starting from a certain point that is not necessarily the beginning
of the series.

(d) The same as above, but in addition, new connections are established between
rule nodes from different EFuNN modules that become activated simultane-

Evolving Connectionist Methods for Supervised Learning 109

ously (at the same time moment). This would make it possible for an ECOS
to learn a correlation between conceptually different variables, e.g. correlation
between speech sound (left module) and lip movement (right module).

3.3.5 EFuNNs Evolve Using Some Evolving Rules. What Are They
in a Summary?

An EFuNN model evolves its structure and functionality based on the following
evolving rules, defined mathematically above.

• A rule for a new node creation
• Rules for local receptive field modifications (incremental learning rules)
• A rule for node aggregation (consolidation rule)
• A rule for node deletion (a forgetting rule)
• A sleep-learning rule
• Other rules as shown above

3.4 Knowledge Manipulation in Evolving Fuzzy Neural
Networks (EFuNNs) – Rule Insertion, Rule Extraction,
Rule Aggregation

It is important for an ECOS that learns in a lifelong learning mode, not only
to adjust its structure and functionality, but also to ‘explain’ at any system
operation time the essence and the ‘knowledge’ the system has learned. Without
this ability the chances of using such systems in areas such as financial decision
making, complex process control, or gene discovery and drug design, are very
slim. The EFuNN architecture, and some other architectures presented thus far,
are knowledge-based indeed as they manipulate knowledge in terms of rules, both
inserting existing knowledge before the evolving process has started, and extracting
refined knowledge from an evolving system. Here more details and analysis of the
knowledge-based character of evolving connectionist systems are given with some
new architectures reviewed and introduced.

3.4.1 Rule Extraction from EFuNNs

At any time (phase) of the evolving (learning) process of an EFuNN fuzzy or exact
rules can be inserted and extracted. Insertion of fuzzy rules is achieved through
setting a new rule node rj for each new rule, such that the connection weights
W1�rj� and W2�rj� of the rule node represent this rule. For example, the fuzzy
rule(IF x1 is Small and x2 is Small THEN y is Small) can be inserted into an EFuNN
structure by setting the connections of a new rule node to the fuzzy condition
nodes x1-Small and x2-Small and to the fuzzy output node y-Small to a value of
1 each. The rest of the connections are set to a value of zero. Similarly, an exact
rule can be inserted into an EFuNN structure: e.g. IF x1 is 3.4 and x2 is 6.7 THEN

110 Evolving Connectionist Systems

y is 9.5. Here the membership degrees to which the input values x1 = 3�4 and
x2 = 6�7, and the output value y = 9�5 belong to the corresponding fuzzy values
are calculated and attached to the corresponding connection weights. Each rule
node rj can be expressed as a fuzzy rule, for example:

Rule rj: IF x1 is Small 0.85 and x1 is Medium 0.15 and x2 is Small 0.7 and x2 is Medium
0.3 (Radius of the receptive field Rj = 0�1, maxRadiusj = 0�75) THEN y is Small 0.2 and y
is Large 0.8 (20 out of 175 examples associated with this rule),

where the numbers attached to the fuzzy labels denote the degree to which the
centres of the input and the output hyperspheres belong to the respective MF. The
degrees associated with the condition elements are the connection weights from
the matrix W1. Only values that are greater than a threshold T1 are left in the
rules as the most important ones. The degrees associated with the conclusion part
are the connection weights from W2 that are greater than a threshold of T2. An
example of rules extracted from a benchmark dynamic time-series data is given in
Section 3.5. The two thresholds T1 and T2 are used to disregard the connections
from W1 and W2 that represent small and insignificant membership degrees (e.g.
less than 0.1). A set of simple rules extracted from ECF was shown in Fig. 3.10.

3.4.2 Rule Aggregation in EFuNNs

Another knowledge-based technique applied to EFuNNs is rule node aggregation.
Through this technique several rule nodes are merged into one as shown in
Fig. 3.19a,b,c on an example of three rule nodes r1, r2, and r3 (only the input space
is shown there).

For the aggregation of three rule nodes r1�r2, and r3 the following two aggregation
rules can be used to calculate the new aggregated rule node raggW1 connections
(the same formulas are used to calculate the W2 connections):
(a) As a geometrical centre of the three nodes:

W1�ragg� = �W1�r1�+W1�r2�+W1�r3��/3 (3.21)

(b) As a weighted statistical centre:

W2�ragg� = �W2�r1��Nex�r1�+W2�r2�Nex�r2�+W2�r3��Nex�r3��/Nsum (3.22)

where

Nex�ragg� = Nsum = Nex�r1�+Nex�r2�+Nex�r3�

The three rule nodes will aggregate only if the radius of the aggregated node
receptive field is less than a predefined maximum radius Rmax:

Rragg = D�W1�ragg��W1�rj��+Rj <= Rmax�

rj is the rule node from the three nodes that have a maximum distance from
the new node raggand Rj is its radius of the receptive field.

(see Fig. 3.19c).

Evolving Connectionist Methods for Supervised Learning 111

r2r1 r3

x1

Output (a)

(b)

Fuzzy Outputs

S S

ragg

r3

r2

r1

x1

x2

µ(ragg)
s(x2)

µ(ragg)
s(x1)

S M L

S

M

L

LM LM

x2

Fig. 3.19 Aggregation of rule nodes in an EFuNN: (a) an example of an evolved EFuNN structure; (b) the
process of aggregation of three rule nodes r1, r2, and r3 into one cluster node ragg�. (Continued overleaf)

112 Evolving Connectionist Systems

X

X

X

X

r1 (2 ex)

r2 (2 ex)

r3 (1 ex)

r agg (5 ex)

Ragg < Rmax

(c)

(d)

Fig. 3.19 (continued) (c) the resulting node ragg from the aggregation of the three rules has a receptive
field radius Ragg which is less than a predefined (as a system parameter) value Rmax ; (d) the process of
aggregation in time, shown for the example of gas-furnace data; the number of rule nodes is aggregated after
every 40 examples; the picture also shows the resulting rule node allocation, their corresponding clusters, the
desired and the approximated gas-furnace function in time, and other EFuNN parameter values (from Kasabov
(2001a,b)).

Evolving Connectionist Methods for Supervised Learning 113

In order for a given node rj to aggregate with other nodes, two subsets of
nodes are formed: the subset of nodes rk that if activated to a degree of 1 will
produce an output value y′�rk� that is different from y′�rj� in less than the error
threshold E, and the subset of nodes that cause output values different from y′�rk�
in more than E. The W2 connections define these subsets. Then all the rule nodes
from the first subset that are closer to rj in the input space than the closest to
rj node from the second subset in terms of W1 distance, get aggregated if the
radius of the new node ragg is less than the predefined limit Rmax for a receptive
field (Fig. 3.19c).

Figure 3.19d shows the process of incrementally adaptive learning and aggre-
gation (after every 40 examples) from the gas-furnace time series. Through aggre-
gation after the 146th example, 17 rule nodes are created. These rule nodes also
represent cluster centres in the input space. The data points that belong to each
of these clusters are shown in different colours.

For classification, instead of aggregating all rule nodes that are closer to a rule
node rj than the closest node from the other class, it is possible to keep the
closest to the other class node from the aggregation pool out of the aggregation
procedure – as a separate node – a ‘guard’ (see Fig. 3.20), thus preventing a
possible misclassification of new data on the bordering area between the two
classes. “Guard” vectors are conceptually similar to support vector in SVM (see
chapter 1).

Through node creation and their consecutive aggregation, an EFuNN system
can adjust over time to changes in the data stream and at the same time preserve
its generalisation capabilities.

Through analysis of the weights W3 of an evolved EFuNN, temporal corre-
lation between time consecutive exemplars can be expressed in terms of rules and
conditional probabilities, e.g.:

IF r1�t −1� THEN r2�t��0�3� (3.23)

The meaning of the above rule is that some examples that belong to the rule
(prototype) r2 follow in time examples from the rule prototype r1 with a relative
conditional probability of 0.3.

3.4.3 Evolving Membership Functions in EFuNN

Changing membership functions is another knowledge-based operation that may
be needed for a refined performance after a certain time moment of the EFuNN’s
operation. Changing the shape of the MF in a fuzzy neural structure such as FuNN
through a gradient descent algorithm is suggested in Kasabov et al. (1997). The
same algorithm, but in a one-epoch incrementally adaptive version, can be used
in EFuNNs. Changing the number of the MFs may also be needed. For example,
instead of three MFs, the system may perform better if it had five MFs for some
of the variables. In traditional fuzzy neural networks this change is difficult to
implement.

In EFuNNs there are several possibilities to implement such dynamical changes
of MF, two of them graphically illustrated in Fig. 3.21a,b. These are: (a) new MFs

114 Evolving Connectionist Systems

(a)

(b)

(c)

(d)

Fig. 3.20 Aggregation of rule nodes (‘support vector’) with the use of a ‘guard’ node strategy. Rule nodes are
presented as circles, the radius of which define their receptive fields and the colour representing the class that
the nodes support (two classes are used): (a) before aggregation; (b) after aggregation, the receptive fields of
the new rule nodes have changed, but the receptive fields of the unchanged nodes, the ‘guard’ nodes, are
unchanged; (c) and (d) the process of aggregation as in (a) and (b) but here presented in one-dimensional
space of the ordered rule nodes where spatial allocation of nodes is applied (from Kasabov (2001a,b)).

are created (inserted) without a need for the old ones to be changed. The degree
to which each cluster centre (each rule node) belongs to the new MF can be
calculated through defuzzifying the centres. (b) All MFs change in order for new
ones to be introduced. For example, all stored fuzzy exemplars in W1 and W2 that
had three MFs, are defuzzified (e.g., through the centre of gravity defuzzification
technique) and subsequently used to evolve a new EFuNN structure that has five
MFs (Fig. 3.21a,b).

Adjustment of MF based on x2 criterion in the incrementally adaptive learning
context of EFuNN can be applied as follows.

1. Initialise the EFuNN with a standard number of MF before the learning begins,
based on some expected rule representation and based on the context of
the data.

Evolving Connectionist Methods for Supervised Learning 115

(a)

(b)

Fig. 3.21 Online membership function modification: (a) new MF are inserted without modifying the existing
ones; (b) five new MF are created that substitute the three old MF (from Kasabov (2001a,b)).

2. During the evolving process, calculate the number of examples that fall in each
of the areas of the already defined MF and their class (output) values.

3. Regularly, after a sufficient number of examples are presented (e.g. 100), start
merging the neighbouring fuzzy intervals and evaluate new ones based on the
X2criteria. The final fuzzy intervals will define the optimal fuzzy MF of a certain
type, e.g. triangular.

3.4.4 Case Study Examples: Learning, Aggregation, and Rule
Extraction from the Mackey–Glass Time Series

Example 1

The following values for the EFuNN parameters were set: initial value for sensi-
tivity threshold S of 0.9; error threshold E = 0�1; a maximum radius Rmax = 0�2;
a rule extraction threshold of 0.5; aggregation is performed after each consecutive
group of 50 examples is presented; m-of-n mode, where m = 1, is used; the number
of membership functions MF is 5; and 1000 consecutive data examples are used.
Some experimental results of the incrementally adaptive evolving of an EFuNN
are presented in Fig. 3.22a–d, as follows: (a) the desired versus the predicted
six-steps-ahead values through one-pass incrementally adaptive learning; (b) the

116 Evolving Connectionist Systems

100 200 300 400 500 600 700 800 900 1000

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

(b)

(c)

(d)

(a)

Fig. 3.22 Experiments for online evolving of an EFuNN from the Mackey–Glass chaotic time-series data. An EFuNN
is evolved on 1000 data examples from the Mackey–Glass time series (four inputs: x�t�, x�t− 6�, x�t− 12�,
and x�t− 18�, and one output x�t+ 6�; see http://legend.gwydion.cs.cmu/neural-bench/benchmarks/mackey-
glass.html): (a) the desired versus the predicted six-steps-ahead value through

Evolving Connectionist Methods for Supervised Learning 117

Table 3.1 Some of the fuzzy rules extracted from the evolved from the
Mackey–Glass data EFuNN (see Fig. 3.22).

Rule 1: If [x1 is (3 0.658) AND [x2 is (4 0.884)] AND [x3 is (4 0.822)] AND
[x4 is (4 0.722)] [Radius of the receptive field R1 = 0�086]

then [y is (4 0.747)[accommodated training examples Nex�r1� = 6]
Rule 2: If [x1 is (3 0.511)] AND [x2 is (4 0.774)] AND [x3 is (4 0.852)] AND

[x4 is (4 0.825)] [Radius of the receptive field R2 = 0�179]
then [y is (3 0.913)][accommodated training examples Nex�r2� = 2]

……………….

Rule 16: If [x1 is (2 0.532)]AND [x2 is (2 0.810)] AND [x3 is (3 0.783)] AND
[x4 is(4 0.928)] [Radius of the receptive field R16 = 0�073)

then [y is (5 0.516)] [accommodated training examples Nex�r16� = 12]

Notation: The fuzzy values are denoted with numbers as follows: 1,very small; 2, small; 3, medium;
4, large; 5, very large; the antecedent and the consequent weights are rounded to the third
digit after the decimal point; smaller values than 0.5 are ignored as 0.5 is used as a threshold
T 1 = T 2 for rule extraction.

absolute, the local incrementally adaptive RMSE (LRMSE), and the local incremen-
tally adaptive NDEI (LNDEI) error over time as described below; (c) the number
of the rule nodes created and aggregated over time; (d) a plot of the input data
vectors (circles) and the evolved rule nodes (the W1 connection weights, crosses)
projected in the two-dimensional input space of the first two input variables x�t�
and x�t −6�.

For different values of the EFuNN parameters, a different number of rule nodes
are evolved, each of them represented as one rule through the rule extraction
procedure (some of the rules are shown in Table 3.1).

After a certain time moment, the LRMSE and LNDEI converge to constant values
subject to a small error. Generally speaking, in the case of compact and bounded
problem space the error can be made sufficiently small subject to appropriate
selection of the parameter values for the EFuNN.

The example here demonstrates that EFuNN can learn a complex chaotic
function through incrementally adaptive evolving from one-pass data propa-
gation. But the real strength of the EFuNNs is in learning processes that change
their dynamics through time, e.g. changing values for the parameter � of the
Mackey–Glass equation. Time-series processes with changing dynamics could be
of different origin, e.g. biological, financial, environmental, industrial processes, or
control.

EFuNNs can also be used for off-line training and testing similar to other
standard NN techniques. This is illustrated in another example shown in
Fig. 3.23a,b.

�
Fig. 3.22 one-pass online learning and consecutive prediction; (b) the absolute, the local online RMSE, and
the local online NDEI over time; (c) the process of creation and aggregation of rule nodes over time; (d) the
input data vectors (circles) and the rule node co-ordinates (W 1 connection weights; crosses) projected in the
two-dimensional input space of the first two input variables x�t� and x�t − 6�. Some of the extracted rules
are shown in Table 3.1.

118 Evolving Connectionist Systems

(a)

(b)

50 100 150 200 250 300 350 400 450 500

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Fig. 3.23 (a) An EFuNN is evolved on 500 data examples from the Mackey–Glass time series (four inputs:
x�t�, x�t−6�, x�t−12�, and x�t−18�, and one output x�t+6�; the figure shows the desired versus the
predicted online values of the time series; (b) after the EFuNN is evolved, it is tested for a global generalisation
on a chunk of 500 future data.

Evolving Connectionist Methods for Supervised Learning 119

Example 2

The following parameter values are set before an EFuNN is evolved: MF =
5; initial S = 0�9; E = 0�01; m = 1; Rmax = 0�2. The EFuNN is evolved
on the first 500 data examples from the same Mackey–Glass time series.
Figure 3.23a shows the desired versus the predicted online values of the
time series. The following are the parameter values: rule nodes, 62; created
nodes, 452; pruned nodes, 335; aggregated nodes, 55; RMSE, 0.034; and NDEI,
0.149.

After the EFuNN is evolved, it is tested for a global generalisation on the second
500 examples. Figure 3.23b shows the desired versus the predicted by the EFuNN
values in an off-line mode.

As pointed out before, after having evolved an EFuNN on a small but represen-
tative part of the whole problem space, its global generalisation error can become
satisfactorily small.

The EFuNN was also tested for incrementally adaptive test error on the test data
while further training on it was performed. The incrementally adaptive local test
error was slightly smaller.

Generally speaking, if continuous and incremental learning is possible (in
many cases of time-series prediction it is) EFuNNs will be continuously evolved
all the time through adaptive lifelong learning, always improving their perfor-
mance. Typical applications of EFuNN would be modelling and predicting of
continuous financial time series, modelling of large DNA data sequences, adaptive
spoken word classification, and many others (see applications in Part II of this
book).

3.4.5 Evolving Fuzzy-2 Clustering in EFuNN

The rule nodes in EFuNN represent cluster centres and have areas associated with
them as the cluster area. If a data point d falls in a cluster area, the membership
degree belonging to the cluster is defined by the formula 1−D�d� c�, where D�d� c�
is the normalised fuzzy distance between the data point d and the cluster centre c
(see Chapter 2).

The clustering that is performed in EFuNN is called here fuzzy-2 clustering
as not only each data point may belong to several clusters to different degrees
(fuzzy), but a cluster centre is defined as fuzzy co-ordinates and a geometrical
area associated with this cluster. For example, a cluster centre c is defined as (x is
Small to a degree of 0.7, and y is Medium to a degree of 0.3; radius of the cluster
area Rc = 0�3).

This is illustrated in Fig. 3.24 where two random number input variables x
and y are mapped into the same variables as outputs (here EFuNN is used as a
replicator); 1000 data points were generated and 98 cluster centres (rule nodes)
were evolved for the following initial parameter values: Sthr = 0�9; Errthr = 0�1;
lr1 = lr2 = 0�1; 3 MF.

120 Evolving Connectionist Systems

Fig. 3.24 Rule nodes in EFuNN represent cluster centres in the input space of randomly generated two-
dimensional input vectors. o, raw data points in a 2D space; x, rule nodes; +, pruned nodes. EFuNN is used
here as a replicator (two inputs, two outputs, that have the same values as the corresponding inputs).

3.4.6 Comparative Analysis of EFuNNs and Other ANN and AI
Techniques for Incrementally Adaptive, Knowledge-Based
Learning

EFuNNs are learning models that can learn in an incrementally adaptive mode any
dataset, regardless of the problem (function approximation, time-series prediction,
classification, etc.) in a supervised, unsupervised, or hybrid learning mode, subject
to appropriate parameter values selected and a certain minimum number of
examples presented. Some well-established NN and AI techniques have difficulties
when applied to incrementally adaptive, knowledge-based learning. For example,
the multilayer perceptrons (MLP) and the backpropagation learning algorithm
have the following problems: catastrophic forgetting (Robins, 1996; Hopfield, 1982),
local minima problem, difficulties to extract rules (Duch et al., 1998), not being
able to adapt to new data without retraining on old ones, and too long training
when applied to large datasets.

The radial basis function RBF neural networks require clustering to be
performed first and then the backpropagation algorithm applied. They are
not efficient for incrementally adaptive learning unless they are significantly
modified.

Evolving Connectionist Methods for Supervised Learning 121

Many neurofuzzy systems, such as ANFIS (Jang, 1993), FuNN (Kasabov et al.,
1997), and neofuzzy neuron (Yamakawa et al., 1992) cannot update the learned
rules through continuous training on additional data without suffering catastrophic
forgetting.

A comparative analysis of different incrementally adaptive learning methods on
the Mackey–Glass time series is shown in Table 3.2. Each model is evolved on
3000 data examples from the Mackey–Glass time series (4 inputs: x�t�, x�t − 6�,
x�t −12�, and x�t −18�, and one output x�t +85�, from the CMU data:

http://legend.gwydion.cs.cmu/neural-bench/benchmarks/mackey-glass.html).
The analysis of Table 3.2 shows that the EFuNN evolving procedure leads to

a similar local incrementally adaptive error as RAN and its modifications, but
EFuNNs allow for rules to be extracted and inserted at any time of the operation
of the system thus providing knowledge about the problem and reflecting changes
in its dynamics. In this respect the EFuNN is a flexible, incrementally adaptive,
knowledge engineering model.

One of the advantages of EFuNN is that rule nodes in EFuNN represent dynamic
fuzzy-2 clusters.

Despite the advantages of EFuNN, there are some difficulties when using them:

(a) EFuNNs are sensitive to the order in which data are presented and to the
initial values of the parameters.

(b) There are several parameters that need to be optimised in an incremen-
tally adaptive mode. Such parameters are: error threshold Err; number,
shape, and type of the membership functions; type of learning; aggregation
threshold and number of iterations before aggregation, etc. In Chapter 6
parameters related to the simple ECF model, such as maxR, minR, m-of-
n, and number of membership functions, are optimised using a genetic
algorithm (GA).

Table 3.2 Comparative analysis of different online learning models on the Mackey–Glass time series. Each
model is evolved on 3000 data examples from the Mackey–Glass time series (four inputs: x�t�, x�t − 6�,
x�t − 12�, and x�t − 18�, and one output x�t + 85�, from the CMU data: http://legend.gwydion.cs.cmu/
neural-bench/benchmarks/mackey-glass.html).

Model Parameter values Number of Centres
(Rule nodes in
EFuNN)

Online LNDEI after
learning 3000
examples

RAN � = 0�02 113 0.373
RAN-GRD � = 0�01 50 0.165
RAN-P-GQRD � = 0�02 31 0.160
EFuNN-su E = 0�05; Rmax = 0�2 91 0.115
EFuNN-dp E = 0�05; Rmax = 0�2 93 0.113
EFuNN-gd E = 0�05; Rmax = 0�2 102 0.103

122 Evolving Connectionist Systems

3.4.7 EFuNNs as Universal Classifiers and Universal
Function Approximators

When issues such as applicability of the EFuNN model, learning accuracy, gener-
alisation, and convergence are discussed for different tasks, two cases must be
distinguished.

Case A

The incoming data are from a compact and bounded problem space. In this case the
more data vectors are presented to an evolving EFuNN, the better its generalisation
is on the whole problem space. After a time moment T , if appropriate values for
the EFuNN parameters are used, each of the fuzzy input and the fuzzy output
spaces (they are compact and bounded) will be covered by hyperspheres of the
evolved rule nodes that will have different receptive fields in the general case.

We can assume that by a certain time moment T a sufficient number of
examples from the stream will have been presented and rule node hyper-
spheres cover the problem space to a desired accuracy. The local incrementally
adaptive error will saturate at this time because any two associated compact
and bounded fuzzy spaces Xf and Yf that represent a problem space can be
fully covered by a sufficient number of associated (possibly overlapping) fuzzy
hyperspheres. The number of these spheres (the number of rule nodes) depends
on the error threshold E, set before the training of the EFuNN system, and on
some other parameters. The error threshold can be automatically adjusted during
learning.

If the task is function approximation, a theorem can be proved that EFuNNs
are universal function approximators subject to the above conditions. This is
analogous to the proof that MLPs with only two layers are universal function
approximators (see for example Cybenko (1989), Funahashi (1989), and Kurkova
(1992) and the proof that fuzzy systems are universal approximators too (see for
example Kosko (1992) and Koczy and Zorat (1997)).

These proofs are based on the well-known Kolmogorov theorem (Kolmogorov,
1957), which states that:

For all n >= 2 there exist n�2n + 1� continuous, monotonously increasing, univariate
functions on the domain [0,1], by which an arbitrary continuous real function f of n
variables can be constructed by the following equation.

f�x1� x2� � � �� xn� =∑
q=0�2n

��q�
∑

p=1�n
�p�q�xp�
 (3.23)

As a continuous function, the sigmoid function is mostly used in MLP and other
ANN architectures. Linear or Gaussian functions are also used which is the case
in the EFuNN architecture.

Case B

The incoming data are from an open problem space, where data dynamics and
data distribution may change over time in a continuous way. In this case the local

Evolving Connectionist Methods for Supervised Learning 123

incrementally adaptive error will depend on the closeness of the new input data
to the existing rule nodes.

3.4.8 Incrementally Adaptive Parameter and Feature Evaluation
in EFuNNs

The performance of the EFuNN depends on its parameter values as illustrated in
Table 3.3 on the Mackey–Glass data, when 3000 examples are used to evolve an
EFuNN on the task of predicting the values at time moments (t + 85), and 500
examples are used to test the system. Different values for the sensitivity threshold
Sthr and for the error threshold E result in a different number of rule nodes and
different values for the RMSE achieved.

Once set, the values of the EFuNN parameters can be either kept fixed during
the entire operation of the system, or can be adapted (optimised). Such parameters
are, for example: the number of membership functions; the value m for the m-of-n
parameter; the error threshold E; the maximum receptive field Rmax; the rule
extraction thresholds T1 and T2; the number of examples for aggregation Nagg;
and the pruning parameters OLD and Pr. Adaptation can be achieved through:
(1) using relevant statistical parameters of the incoming data; (2)incrementally
adaptive self-analysis of the behaviour of the system; (3) feedback connection
from higher-level modules in the ECOS architecture; and (4) all the above
methods.

Table 3.4 shows the results of a similar experiment to the one shown in Table 3.3,
but here the two EFuNN parameters are adapted automatically after every 700
examples based on the current RMSE. If the current RMSE is higher than an
expected one, the value for E decreases by a delta value �E and the value of Sthr
increases by a delta value �Sthr. In the experiment shown in Table 3.4 delta values
of 0.05 and 0.06 are used for both parameters.

Genetic algorithms (GA) and evolutionary programming techniques can also
be applied to optimise the EFuNNs structural and functional parameters through
evolving populations of EFuNNs over generations and evaluating each EFuNN in

Table 3.3 Number of rule nodes, training, and test errors when different EFuNNs are evolved for different
parameter values of sensitivity threshold Sthr and error threshold E. The Mackey–Glass series is used for training
for incremental training and prediction of the value of the series at time moment t+ 85 using 3000 initial
data points (called training) and further 500 points (called testing). The error on the test 500 vectors is smaller
than the training error on the first 3000 vectors, as the model is tested on each test data vector, but then it is
further trained on it, in the same way as it was done for the training data.

Sensitivity threshold
sthr

Error threshold E Number of
evolved rule
nodes Rn

RMSE on the
training data

RMSE on the test
data

0�7 0�3 335 0�077 0�06
0�75 0�25 373 0�073 0�055
0�8 0�2 425 0�068 0�05
0�85 0�15 541 0�064 0�043
0�9 0�1 742 0�055 0�033
0�95 0�055 1300 0�046 0�024

124 Evolving Connectionist Systems

Table 3.4 Self- tuning of the parameters Sthr and error threshold E in an EFuNN structure. EfuNNs, as from
the experiment shown in Table 3.3. Delta values are used for an automatic increase/decrease of the sensitivity
threshold Sthr and the error threshold E based on the RMSE, after every 700 examples. The experimented delta
values here are 0.05 and 0.06.

Delta value Initial
sthr

Final
sthr

Initial errthr Final errthr Rule nodes
Rn

RMSE on
training
data

RMSE on
test data

0.05 0.7 0.9 0.3 0.1 467 0.074 0.04
0.06 0.7 0.96 0.3 0.04 1388 0.052 0.024

Note: A desired maximum RMSE is set to 0.045; Sthr and Errthr modification after every 700 examples.

the population at certain time intervals (see Chapter 6 for an example of ECF
optimisation through GA).

The evaluation of the relevance of the input variables to the task can be done
in an incrementally adaptive mode. One way to achieve this is to continuously
evaluate the correlation of each input variable to each output class, or to each
membership function of the output variables, e.g. Corr (x1, [y is Small, Medium,
High]) = [0.7, 0.4, –0.3] thus producing continuous information on the most
relevant input features (see Chapter 7 for details).

In addition to optimising the set of features for an EFuNN in an incrementally
adaptive mode, new features can be added, new inputs and new outputs, while the
system is operating, similar to the case of the eMLP. Because EFuNN uses local
normalized fuzzy distance, new input variables and new output variables can be
added to the EFuNN structure at any time of its operation if new data contain
these variables.

The following algorithm allows for adding new outputs to already trained EFuNN
for a further training.

1. Insert new output node and its initial two fuzzy output nodes representing ‘yes’
and ‘no’ for this output.

2. Connect the ‘no’ output fuzzy nodes with zero connection weights to the already
existing rule nodes.

3. Continue the evolving learning process as previously done.

The above simple algorithm is used in Chapter 11 to add new classes of words
into an already-trained EFuNN for word recognition.

3.5 Exercise

Choose a classification problem and a dataset for it.
Select a set of features for a classification model.
Build an inductive and a transductive SVM classification model and validate
their accuracy through a cross-validation technique.
Build an inductive and a transductive MLP classification model and validate
their accuracy through a cross-validation technique.

Evolving Connectionist Methods for Supervised Learning 125

Build an inductive and a transductive RBF classification model and validate
their accuracy through a cross-validation technique.
Build an inductive and a transductive ECF classification model and validate
their accuracy through a cross-validation technique.
Demonstrate model and rule adaptation of an ECF model on new data.
Answer the following questions:

(a) Which of the above models are adaptive to new data and under what conditions
and constraints?

(b) Which models allow for knowledge extraction and what type of knowledge
can be acquired from them?

3.6 Summary and Open Questions

This chapter presents dynamic supervised learning systems. A simple evolving
model, EFuNN, and other dynamic supervised learning models are presented that
incorporate important AI features, such as adaptive, evolving learning; nonmono-
tonic reasoning; knowledge manipulation in the presence of imprecision and
uncertainties; and knowledge acquisition and explanation.

EFuNNs have features of knowledge-based systems, logic systems, case-
based reasoning systems, and adaptive connectionist-based systems, all together.
Through self-organization and self-adaptation during the learning process, they
allow for solving difficult engineering tasks as well as for simulation of emerging,
evolving biological and cognitive processes to be attempted. The lifelong learning
mode is the natural learning mode of all biological systems.

The EFuNN models can be implemented in software or in hardware with the
use of either conventional or new computational techniques.

The EFuNN applications span across several application areas of information
science, life sciences, and engineering, where systems learn from data and improve
continuously (Kasabov, 2000a). Some of them are presented in PartII of this book.

Despite the excellent properties of the EFuNNs and the other types of incrementally
adaptive ECOS, there are several issues that need to be addressed in the future:

1. How to optimise all ECOS parameters, including choosing the best set of features
in an incrementally adaptive mode. This question relates to modifying the
evolving rules of EFuNN to better model the incoming data and to reflect on
changes in the evolving rules of the modelled process. Only one possible answer
is presented in Chapter 6.

2. How to evaluate the convergence property of an ECOS if it is working in an
open space.

3. How to evaluate in an incrementally adaptive mode, which supervised model,
out of several available, is the best for a given task, or for a given time period
of this task.

4. How can knowledge be transferred from one connectionist model to another if
the two methods use different knowledge representations?

126 Evolving Connectionist Systems

5. How much can one rely on the labels (desired data, output values) provided with
the data for supervised learning? (e.g. are the diagnostic labels associated with
patients data always correct?) Would fuzzy representation help to accommodate
and deal with the imprecision during data collection?

6. If wrong labels are associated with data, would unsupervised evolving learning
be more precise than supervised learning? How can we make an ECOS model
‘unlearn’ associations between input vectors and output classes if more precise
labels for the samples become available in the future?

3.7 Further Reading

A full description of the evolving connectionist architectures presented as well as
of some other architectures for supervised incrementally adaptive learning can be
found as follows.

• EFuNN (Kasabov, 1998, 2001a,b)
• Simple ECOS, eMLP (Watts and Kasabov, 2002; Ghobakglou et al., 2003; Watts,

2006)
• Incrementally Adaptive Learning in Multilayer Perceptron Architectures (Amari,

1990; Saad, 1999)
• ART Architectures and the Stability–plasticity Dilemma (Grossberg, 1981, 1988.
• ARTMAP (Carpenter et al ., 1991)
• FuzzyARTMAP (Carpenter et al., 1992)
• Incrementally Adaptive Q-learning (Rummery and Niranjan, 1994)
• Online Learning in ZISC (Zero Instruction Set Computer) (ZISC Manual, 2001)
• Life-long Learning Cell Structures (Hamker, 2001; Bruske et al., 1998; Hamker

and Gross, 1997)
• Hybrid Neuro-fuzzy Systems for Adaptive and Continuous Learning (Berenji,

1992; Lim and Harrison, 1998)
• Incrementally Adaptive Learning in RBF Networks (Karayiannis and Mi, 1997;

Platt, 1991; Fritzke, 1995; Freeman and Saad, 1997)
• Quantizable RBF Networks (Poggio and Girosi, 1990)
• Prediction of Chaotic Time-series with a Resource-allocating RBF Network

(Rosipal et al., 1997)
• Sleep Learning in EFuNN and other Connectionist Models (Yamauchi and

Hayami, 2006)

4. Brain Inspired Evolving
Connectionist Models

The chapter presents some closer to the brain information processing connectionist
methods, namely state-based ANN realized in recurrent connectionist structures,
reinforcement learning ANN, and spiking ANN. In the state-based ANN the output
signal from the model depends not only on the inputs and the connections, but
on its previous states. A mathematical model describing such behaviour is finite
state automata, realized here in a recurrent network structure, where connections
from outputs or hidden nodes connect back to the inputs or to the hidden layer.
Spiking neural networks (SNN) are brainlike connectionist methods, where the
output activation is represented as a train of spikes rather then as a potential. The
chapter is presented in the following sections.

• State-based ANN
• Reinforcement learning
• Evolving spiking neural networks
• Summary and open problems
• Further reading

4.1 State-Based ANN

A classical model for modelling systems described by states and their transitions
is the finite automata model that has already been shown to be a good theoretical
candidate for modelling brain states and their transitions (see Arbib (1972, 1987)).
Here we present a new version of it – evolving finite automata – and show how
the model can be realised in a recurrent evolving connectionist structure.

4.1.1 Evolving Finite Automata

A deterministic finite-state automaton is characterized by a finite number of states.
It is described as a five-tuple A = �X� S� �� q�O�, where S = �s1� s2� � � � � sn�, is a set
of states, s0 is a designated initial state. X = �x1� x2� � � � � xk� is the alphabet of the
input language.

The transition table �: �X × S�->S defines the state transitions in A. F is a set
of final states (outputs) defined through an output transformation q 	 S->O.

127

128 Evolving Connectionist Systems

A deterministic finite-state fuzzy automaton is characterized by a seven-tuple
A = �X� FX� S� �� q�O� FO�, where S, X, and O are defined as in the nonfuzzy
automaton. Fuzzy membership functions are defined as sets FX and FO for the
input and the output variables, respectively. Transitions are defined as follows:
� 	 �FX × S�->S defines the state transitions, and q 	 S->FO defines the output
fuzzy transitions.

Further in this section the concepts of evolving automata and evolving fuzzy
automata are first introduced and then implemented in an evolving connectionist
structure.

In an evolving automaton, the number of states in the set S is not defined
a priori; rather it increases and decreases in a dynamic way, depending on the
incoming data. New transitions are added to the transition table. The number of
inputs and outputs can change over time.

In an evolving fuzzy automaton, the number of states is not defined a priori as
is the case for the nonfuzzy automata. New transitions are added to the transition
table as well as new output fuzzy transitions. The number of inputs and outputs
can change over time.

4.1.2 Recurrent Evolving Neural Networks and Evolving Automata

Recurrent connectionist architectures, having the feature to capture time depen-
dencies, are suitable techniques to implement finite automata. In Omlin and Giles
(1994) recurrent MLPs that have fixed structures are used to implement finite
automata. In a reverse task, a finite automaton is extracted from a trained recurrent
MLP.

Recurrent connectionist systems have feedback connections from a hidden or
output layer of neurons back to the inputs or to the hidden layer nodes.

There are two main types of recurrent connectionist architectures of EFuNN that
are derivatives of the main EFuNN architecture. They are depicted in Fig. 4.1a,b.

1. The feedback connections are from the hidden rule nodes to the same nodes
but with a delay of some time intervals, similar to the recurrent MLP (Elman,
1990).

2. The feedback connections are from the output nodes to the hidden nodes,
similar to the proposed system in Lawrence et al. (1996)

Recurrent connectionist structures capture temporal dependencies between the
presented data examples from the data stream (Grossberg, 1969; Fukuda et al.,
1997). Sometimes these dependencies are not known in advance. For example,
a chaotic time series function with changing dynamics may have different autocor-
relation characteristics at different times. This implies a different dependency
between the predicted signal in the future and the past data values. The number
of the time-lags cannot be determined in advance. It has to be learned and built
in the system’s structure as the system operates.

Figure 4.2a,b illustrates the autocorrelation characteristics of a speech signal,
phoneme /e/ in English, pronounced by a male speakers of New Zealand English:
(a) the raw signal in time; (b) the autocorrelation. The autocorrelation analysis

Brain Inspired Evolving Connectionist Models 129

Fuzzy output
layer

Rule layer

Fuzzy input
layer

R (t–1)

Inputs
x(t)

Outputs
y(t)

Delay Fuzzy output
layer

Rule layer

Fuzzy input
layer

R(t)

Outputs
y(t)

Inputs
x(t)

(t–3)
(t–2)

(a) (b)

Fig. 4.1 Two types of recurrent EFuNN structures: (a) recurrent connections from the rule layer; (b) recurrent
connections from the output layer.

shows that there is correlation between the signal at a current time moment (t = 0)
and the signal at previous moments. These time dependencies are very difficult
to know in advance and a preferred option would be that they are learned in an
online mode.

Autocorrelation and other time-dependency characteristics can be captured
online in the recurrent connections of an evolving connectionist structure as
explained in this section.

Although the connection weights W1 and W2 capture fuzzy co-ordinates of
the learned prototypes (exemplars) represented as centres of hyperspheres, the
temporal layer of connection weights W3 of the EFuNN (Chapter 3) captures
temporal dependencies between consecutive data examples. If the winning rule
node at the moment (t − 1) (with which the input data vector at the moment
(t − 1) is associated) is rmax

�t−1�, and the winning node at the moment t is rmax
�t�,

then a link between the two nodes is established as follows.

W3�rmax
�t−1�� rmax

�t�� = W3�rmax
�t−1�� rmax

�t��+ l3�A1�rmax
�t−1��A1�rmax

�t�� (4.1)

where A1�r�t�� denotes the activation of the rule node r at a time moment (t);
and l3 defines the degree to which the EFuNN associates links between rule nodes
(clusters, prototypes) that include consecutive data examples. If l3 = 0, no temporal
associations are learned in an EFuNN structure. Figure 4.3 shows a hypothetical
process of rule node creation in a recurrent EFuNN for learning the phoneme /e/
from input data that are presented frame by frame.

Rather than using fixed time-lags as inputs to a time-series modeling system, the
structure shown in Fig. 4.1b of a recurrent EFuNN can be used to learn temporal
dependencies of a time series ‘on the fly’.

130 Evolving Connectionist Systems

Fig. 4.2 (a) A waveform of a speech signal over time representing a pronunciation of the phoneme /e/ in
English, by a male speaker; (b) the autocorrelation characteristics of the signal. The autocorrelation analysis
shows that there is correlation between the signal at a time moment (indicated as 0 time), and the signal at
previous moments. The middle vertical line represents the signal at a time 0.

Brain Inspired Evolving Connectionist Models 131

r1

r2 r3
r4

/e/1

/e/4

/e/2
/e/3 /e/5 /e/6

W3(1,2)

W3(2,3)
W3(3,4)

Spatial-temporal
representation of
phoneme /e/ data.
W3 can be used to account
for the temporal links.

Fig. 4.3 The process of evolving nodes and recurrent connections for a pronounced phoneme /e/.

Two experiments were conducted to compare the EFuNN and the recurrent
EFuNN (called REFuNN) on the two benchmark time-series data used in this book:
the gas-furnace data, and the Mackey–Glass data. The results shown in Table 4.1
suggest that even for a stationary time series the REFuNN gives a slightly better
result. If the dynamics of the time series change over time, the REFuNN would
be much superior to the EFuNN in a longer term of the evolving process. The
following parameters were used for both the EFuNN and the REFuNN systems
for the gas-furnace data: 4 MF, Sthr = 0�9, Errthr = 0�1, lr1 = lr2 = 0, no pruning,
no aggregation. For the Mackey–Glass data experiments, the following parameter
values were used: 4 MF, Sthr = 0�87, Errthr = 0�13, lr1 = lr2 = 0, no pruning, no
aggregation.

For the same values of the parameters, the recurrent EFuNN – REFuNN, achieves
less error for less number of rule nodes. This is due to the contribution of the
feedback connections to capture existing temporal relationship in the time series.

A recurrent EFuNN can realize an evolving fuzzy automaton as illustrated in
Fig. 4.4. In this realization the rule nodes represent states and the transition
function is learned in the recurrent connections. Such an automaton can start
learning and operating without any transition function and it will learn this
function in an incremental, lifelong way.

Table 4.1 Comparative analysis between an EFuNN architecture and a recurrent EFuNN
architecture with recurrent connections from the output nodes back to the rule nodes. Two
benchmark datasets are used: Mackey–Glass series and gas-furnace time series (see Chapter 1).
In both cases the recurrent version of EFuNN–REFuNN, evolves less nodes and achieves better
accuracy. The reason is that the REFuNN captures some temporal relationship in the time-series
data.

Number of rule
nodes

RMSE

EFuNN for the gas furnace data 58 1.115
REFuNN for the gas furnace data 43 1.01
EFuNN for the Mackey–Glass data 188 0.067
REFuNN for the Mackey–Glass data 156 0.065

132 Evolving Connectionist Systems

Input Layer

Fuzzy Input Layer

States S(t)

Fuzzy Outputs

Outputs

Inputs X

Outputs O

States S(t–1) layer

W3

Fig. 4.4 Recurrent EFuNN realising an evolving fuzzy finite automaton. The transitions between states are
captured in the short-term memory layer and in the feedback connections.

As shown in Chapter 3, at any time of the evolving process of a recurrent
EFuNN, a meaningful internal representation of the network such as a set of rules
or their equivalent fuzzy automaton can be extracted. The REFuNN has some extra
evolving rules, such as the recurrent evolving rule defined in Eq. (4.1).

4.2 Reinforcement Learning

Reinforcement learning is based on similar principles as supervised learning, but
there is no exact desired output and no calculated exact output error. Instead,
feedback “hints” are given. There are several cases in a reinforcement learning
procedure for an evolving connectionist architecture, such as EFuNN (see Chapter 3):

(a) There is a rule node activated (by the current input vector x) above the
preset threshold, and the highest activated fuzzy output node is the same as
the received fuzzy hint. In this case the example x is accommodated in the
connection weights of the highest activated rule node according to the learning
rules of EFuNN.

(b) Otherwise, there will be a new rule node created and new output neuron (or
new module) created to accommodate this example. The new rule node is then
connected to the fuzzy input nodes and to a new output node, as is the case
in the supervised evolving systems (e.g. as in the EFuNN algorithm).

Brain Inspired Evolving Connectionist Models 133

X1

X2

State nodesRule
nodes

Fuzzy
input .nodes

Actions

+1
–7

+12

Fig. 4.5 An exemplar recurrent EFuNN for reinforcement learning.

Figure 4.5 shows an example of a recurrent EFuNN for reinforcement learning.
The fuzzy output layer is called here a state node layer. The EFuNN structure has
feedback connections from its fuzzy outputs back to its rule nodes.

The connection weights from the state to the action (output) nodes can be
learned through reinforcement learning, where the awards are indicated as positive
connection weights and the punishments as negative connection weights. This type
of recurrent EFuNN can be used in mobile robots that learn and evolve as they
operate. They are suitable techniques for the realization of intelligent agents when
supervised, unsupervised, or reinforcement learning is applied at different stages
of the system’s operation.

4.3 Evolving Spiking Neural Networks

4.3.1 Spiking Neuron Models

SNN models are more biologically plausible to brain principles than any of the
above ANN methods. A neuron in a spiking neural network, communicates with
other neurons by means of spikes (Maass, 1996, 1998; Gerstner and Kistler, 2002;
Izhikevich, 2003). A neuron Ni receives continuously input spikes from presynaptic
neurons Nj (Fig. 4.6). The received spikes in Ni accumulate and cause the emission
of output spikes forming an output spike train that is transmitted to other neurons.

This is a more biologically realistic model of a neuron that is currently used
to model various brain functions, for instance pattern recognition in the visual
system, speech recognition, and odour recognition.

We describe here the Spike Response Model (SRM) as a representative of spiking
neuron models that are all variations of the same theme. In a SRM, the state of
a neuron Ni is described by the state variable ui(t) that can be interpreted as a
total somatic postsynaptic potential (PSP). The value of the state variable ui(t) is
the weighted sum of all excitatory and inhibitory synaptic post synaptic potentials
PSPs:

ui�t� =∑

j∈
i

∑

tj∈Fj

Wij�ij�t − tj −�ij� (4.2)

134 Evolving Connectionist Systems

Fig. 4.6 Spiking model of a neuron sends and receives spikes to and from other neurons in the network,
similar to biological neurons (from Benuskova and Kasabov (2007)).

where
i is the pool of neurons presynaptic to neuron Ni, Fi is the set of times tj < t
when presynaptic spikes occurred, and �ij is an axonal delay between neurons i
and j, which increases with the increase of the physical distance between neurons
in the network. The weight of synaptic connection from neuron Nj to neuron
Ni is denoted Wij. It takes positive (negative) values for excitatory (inhibitory)
connections, respectively. When ui�t� reaches the firing threshold
i�t� from below,
neuron Ni fires, i.e. emits a spike.

Immediately after firing the output spike at ti, the neuron’s firing threshold

i�t� increases k times and then returns to its initial value
0 in an exponential
fashion. In such a way, absolute and relative refractory periods are modeled:

i�t − ti� = k×
0 exp
(

− t − ti

�

)

(4.3)

where �
 is the time constant of the threshold decay. Synaptic PSP evoked on
neuron i when a presynaptic neuron j from the pool
i fires at time tj is expressed
by the positive kernel �ij�t − tj −�ij� = �ij�s� such that

�ij�s� = A

(

exp

(

− s

�decay

)

− exp
(

− s

�rise

))

(4.4)

where � are time constants of the decay and rise of the double exponential,
respectively, and A is the amplitude of PSP. To make the model more biologically
realistic, each synapse be it an excitatory or inhibitory one, can have a fast and
slow component of its PSP, such that

�
type
ij �s� = Atype

(

exp

(

− s

�
type
decay

)

− exp

(

− s

�
type
rise

))

(4.5)

where type denotes one of the following: fast_excitation, fast_inhibition,
slow_excitation, and slow_inhibition, respectively. These types of PSPs are based

Brain Inspired Evolving Connectionist Models 135

on neurobiological data (Destexhe, 1998; Deisz, 1999; Kleppe and Robinson, 1999;
White et al., 2000).

In each excitatory and inhibitory synapse, there can be a fast and slow
component of PSP, based on different types of postsynaptic receptors.

A SNN is characterized in general by:

• An encoding scheme for the representation of the input signals as spike trains,
to be entered into a spiking neuronal model

• A spiking model of a single neuron
• A learning rule of a neuron, including a spiking threshold rule
• A SNN structure
• Learning rules for the SNN including rules for changing connection weights and

creation of neurons

In Bohte et al. (2000) a MLP architecture is used for a SNN model and the
backpropagation algorithm is modified for spike signals. In Strain et al. (2006)
this architecture is further developed with the introduction of a new rule for a
dynamically adjusting firing threshold.

The evolving rules in a SNN, being a biologically plausible ANN model, can
include some parameters that are directly related to genes and proteins expressed
in the brain as it is presented in the computational neuro-genetic model in
Chapter 9 and in Table 9.2 (see Benuskova and Kasabov (2007)). A simple, evolving
rule there relates to evolving the output spiking activity of a neuron based on
changes in the genetic parameters.

Fig. 4.7 (a) Suprathreshold summation of PSPs in the spiking neuron model. After each generation of
postsynaptic spike there is a rise in the firing threshold that decays back to the resting value between
the spikes. (b) Subthreshold summation of PSPs that does not lead to the generation of postsynaptic spike.
(c) PSP is generated after some delay taken by the presynaptic spike to travel from neuron j to neuron i (from
Benuskova and Kasabov (2007)).

136 Evolving Connectionist Systems

4.3.2 Evolving Spiking Neural Networks (eSNN)

Evolving SNN (eSNN) are built of spiking neurons (as described above), where
there are new evolving rules for:

• Evolving new neurons and connections, based on both parameter (genetic)
information and learning algorithm, e.g. the Hebbian learning rule (Hebb, 1949)

• Evolving substructures of the SNN

An example of such eSNN is given in Wysoski et al. (2006) where new output classes
presented in the incoming data (e.g. new faces in a face recognition problem)
cause the SNN to create new substructures; see Fig. 4.8.

The neural network is composed of three layers of integrate-and-fire neurons.
The neurons have a latency of firing that depends upon the order of spikes received.
Each neuron acts as a coincidence detection unit, where the postsynaptic potential
for neuron Ni at a time t is calculated as

PSP�i� t� =∑
mod order�j�w

j�i
(4.6)

where mod ∈ �0� 1� is the modulation factor, j is the index for the incoming
connection, and wj�i is the corresponding synaptic weight.

Each layer is composed of neurons that are grouped in two-dimensional grids
forming neuronal maps. Connections between layers are purely feedforward and
each neuron can spike at most once on a spike arrival in the input synapses. The
first layer cells represent the ON and OFF cells of the retina, basically enhancing

Fig. 4.8 Evolving spiking neural network (eSNN) architecture for visual pattern recognition (from Wysoski et al.
(2006)).

Brain Inspired Evolving Connectionist Models 137

the high-contrast parts of a given image (highpass filter). The output values of the
first layer are encoded into pulses in the time domain. High output values of the
first layer are encoded as pulses with short time delays whereas long delays are
given low output values. This technique is called rank order coding (Thorpe et al.,
1998) and basically prioritizes the pixels with high contrast that consequently are
processed first and have a higher impact on neurons’ PSP.

The second layer is composed of eight orientation maps, each one selective to
a different direction (0�, 45�, 90�, 135�, 180�, 225�, 270�, and 315�). It is important
to notice that in the first two layers there is no learning, in such a way that
the structure can be considered simply passive filters and time-domain encoders
(layers 1 and 2). The theory of contrast cells and direction selective cells was
first reported by Hubel and Wiesel (1962). In their experiments they were able
to distinguish some types of cells that have different neurobiological responses
according to the pattern of light stimulus.

The third layer is where the learning takes place and where the main contribution
of this work is presented. Maps in the third layer are to be trained to represent
classes of inputs. In Thorpe et al. (1998) the learning is performed off-line using
the rule:

�wj�i = mod order�aj�

N
(4.7)

where wj�i is the weight between neuron j of the second layer and neuron i of the
third layer, mod ∈ (0,1) is the modulation factor, order�aj� is the order of arrival
of a spike from neuron j to neuron i, and N is the number of samples used for
training a given class.

In this rule, there are two points to be highlighted: (a) the number of samples
to be trained needs to be known a priori; and (b) after training, a map of a class
will be selective to the average pattern.

In Wysoski et al. (2006) a new approach is proposed for learning with structural
adaptation, aiming to give more flexibility to the system in a scenario where the
number of classes and/or class instances is not known at the time the training
starts. Thus, the output neuronal maps need to be created, updated, or even deleted
online, as the learning occurs. To implement such a system the learning rule needs
to be independent of the total number of samples because the number of samples
is not known when the learning starts. In the implementation of Equation (4.7) in
Delorme et al. (1999, 2001) the outcome is the average pattern. However, the new
equation in Wysoski et al. (2006) calculates the average dynamically as the input
patterns arrive as explained below.

There is a classical drawback to learning methods when, after training, the
system responds to the average pattern of the training samples. The average
does not provide a good representation of a class in cases where patterns have
high variance (see Fig. 4.9). A traditional way to attenuate the problem is the
divide-and-conquer procedure. We implement this procedure through the struc-
tural modification of the network during the training stage. More specifically,
we integrate into the training algorithm a simple clustering procedure: patterns
within a class that comply with a similarity criterion are merged into the same
neuronal map. If the similarity criterion is not fulfilled, a new map is generated.

138 Evolving Connectionist Systems

Fig. 4.9 Divide-and-conquer procedure to deal with high intraclass variability of patterns in the hypothetical
space of class K. The use of multiple maps that respond optimally to the average of a subset of patterns
provides a better representation of the classes than using a global average value.

The entire training procedure follows four steps described next and summarized
in the flowchart of Fig. 4.10.

The new learning procedure can be described in these sequential steps:

Propagation to retina and DSC

New training sample

Create a new map MapC(k)

For MapC(k), train the weights WC(k) and
calculate PSPthreshold C(k)

Calculate similarity S between WC(k) and
WC(k) (other maps i of the same class)

If S(i) > Thsim

Merge map MapC(k) and MapC(i)

yes

no

Fig. 4.10 A flowchart of the eSNN online learning procedure.

Brain Inspired Evolving Connectionist Models 139

Propagate a sample k of class K for training into the layer 1 (retina) and layer
2 (direction selective cells, DSC);
Create a new map MapC�k� in layer 3 for sample k and train the weights using
the equation:

�wj�i = mod order�aj� (4.8)

where wj�i is the weight between neuron j of layer 2 and neuron i of layer 3,
mod ∈ (0,1) is the modulation factor, and order�aj� is the order of arrival of
spike from neuron j to neuron i.
The postsynaptic threshold (PSPthreshold) of the neurons in the map is calculated
as a proportion c ∈ [0,1] of the maximum postsynaptic potential (PSP) created
in a neuron of map MapC�k� with the propagation of the training sample into
the updated weights, such that:

PSPthreshold = c max�PSP� (4.9)

The constant of proportionality c expresses how similar a pattern needs to be
to trigger an output spike. Thus, c is a parameter to be optimized in order
to satisfy the requirements in terms of false acceptance rate (FAR) and false
rejection rate (FRR).
Calculate the similarity between the newly created map MapC�k� and other maps
belonging to the same class MapC�K�. The similarity is computed as the inverse
of the Euclidean distance between weight matrices.

If one of the existing maps for class K has similarity greater than a chosen
threshold ThsimC�K� > 0, merge the maps MapC�k� and MapC�Ksimilar� using the
arithmetic average as expressed in

W = WMapC�k�
+NsamplesWMapC�Ksimilar�

1+Nsamples

(4.10)

where matrix W represents the weights of the merged map and Nsamples denotes
the number of samples that have already being used to train the respective map.
In similar fashion the PSPthreshold is updated:

PSPthreshold = PSPMapC�k�
+NsamplesPSPMapC�Ksimilar�

1+Nsamples

(4.11)

4.4 Summary and Open Questions

The methods presented in this chapter only indicate the potential of the
evolving connectionist systems for learning in a reinforcement mode, for learning
temporal dependencies, for the realisation of evolving finite automata, and for the

140 Evolving Connectionist Systems

implementation of more biologically plausible ANN models such as the SNN and
the evolving SNN (eSNN).

The topics covered in the chapter also raise some issues such as:

1. How to optimize the time lags of output values or inner states that the system
should use in order to react properly on future input vectors in an online mode
and an open problem space.

2. How can ECOS handle fuzzy reinforcement values if these values come from
different sources, each of them using different, unknown to the system, fuzzy
membership functions?

3. How can evolving fuzzy automata be evaluated in terms of the generalisation
property?

4. How biologically plausible should a SNN model be in order to model a given
brain function?

5. How biologically plausible should the SNN be in order to be used for solving
complex problems of CI, such as speech recognition, image recognition, or
multimodal information processing?

6. How to develop an eSNN that evolves its rules for:

• Firing threshold adjustment
• Neuronal connection creation and connection deletion
• Neuron aggregation

7. How to develop eSNN automata, where the whole SNN at a certain time is
represented as a state. The transition between states may be interpreted then
as learning knowledge representation.

4.5 Further Reading

Some more on the subject of this chapter can be read in the following references.

• Recurrent Structures of NN (Elman, 1990; Arbib, 1995, 2002)
• Finite Automata and their Realization in Connectionist Architectures (Arbib,

1987; Omlin and Giles, 1994)
• Introduction to the Theory of Automata (Zamir,1983; Hopkin and Moss, 1976).
• Symbolic Knowledge Representation in Recurrent Neural Networks (Omlin and

Giles, 1994)
• Reinforcement Learning (Sutton and Barto,1998)
• Spiking MLP and Backpropagation Algorithm (Bohte et al., 2000)
• Spiking Neural Networks (Maass, 1996, 1998; Gerstner and Kistler, 2002;

Izhikevich, 2003)
• SNN with a Firing Threshold Adjustment (Strain et al., 2006)
• Using SNN for Pattern Recognition (Delorme et al., 1999; Delorme and Thorpe,

2001; Wysoski et al., 2006; Thorpe et al., 1998)
• Evolving SNN (eSNN) (Wysoski et al., 2006)
• Computational Neuro-genetic Modeling Using SNN (Benuskova and Kasabov,

2007)

5. Evolving Neuro-Fuzzy
Inference Models

Some knowledge-based fuzzy neural network models for adaptive incremental
(possibly online) learning, such as EFuNN and FuzzyARTMAP, were presented
in the previous chapter. Fuzzy neural networks are connectionist models that are
trained as neural networks, but their structure can be interpreted as a set of fuzzy
rules. In contrast to them, neuro-fuzzy inference systems consist of a set of rules
and an inference method that are embodied or combined with a connectionist
structure for a better adaptation. Evolving neuro-fuzzy inference systems are such
systems, where both the knowledge and the inference mechanism evolve and
change in time, with more examples presented to the system. In the models here
knowledge is represented as both fuzzy rules and statistical features that are learned
in an online or off-line, possibly, in a lifelong learning mode. In the last three
sections of the chapter different types of fuzzy rules, membership functions, and
receptive fields in ECOS (that include both evolving fuzzy neural networks and
evolving neuro-fuzzy inference systems) are analysed and introduced. The chapter
covers the following topics.

• Knowledge-based neural networks
• Hybrid neuro-fuzzy inference system: HyFIS
• Dynamic evolving neuro-fuzzy inference system (DENFIS).
• TWNFI: Transductive weighted neuro-fuzzy inference systems for ‘personalised’

modelling
• Other neuro-fuzzy inference systems
• Exercise
• Summary and open problems
• Further reading

5.1 Knowledge-Based Neural Networks

5.1.1 General Notions

Knowledge (e.g. rules) is the essence of what a knowledge-based neural network
(KBNN) has accumulated during its operation (see Cloete and Zurada (2000).
Manipulating rules in a KBNN can pursue the following objectives.

141

142 Evolving Connectionist Systems

1. Knowledge discovery, i.e. understanding and explanation of the data used to
train the KBNN. The extracted rules can be analysed either by an expert, or by
the system itself. Different methods for reasoning can be subsequently applied
to the extracted set of rules.

2. Improvement of the KBNN system, e.g. maintaining an optimal size of the
KBNN that is adequate to the expected accuracy of the system. Reducing the
structure of a KBNN can be achieved through regular pruning of nodes and
connections thus allowing for knowledge to emerge in the structure, or through
aggregating nodes into bigger rule clusters. Both approaches are explored in
this chapter.

Types of Rules Used in KBNN

Different KBNNs are designed to represent different types of rules, some of them
listed below.

1. Simple propositional rules (e.g. IF x1 is A AND/OR x2 is B THEN y is C, where
A, B, and C are constants, variables, or symbols of true/false type) (see, for
example, Feigenbaum (1989), Gallant (1993), and Hendler and Dickens (1991)).
As a partial case, interval rules can be used, for example:
IF x1 is in the interval [x1min, x1max] AND x2 is in the interval [x2min,
x2max] THEN y is in the interval [ymin, ymax], with Nr1 examples associated
with this rule.

2. Propositional rules with certainty factors (e.g., IF x1 is A (CF1) AND x2 is B
(CF2) THEN y is C (CFc)), (see, e.g. Fu (1989)).

3. Zadeh–Mamdani fuzzy rules (e.g., IF x1 is A AND x2 is B THEN y is C, where
A, B, and C are fuzzy values represented by their membership functions) (see,
e.g. Zadeh (1965) and Mamdani (1977)).

4. Takagi–Sugeno fuzzy rules (e.g. the following rule is a first-order rule: IF x1 is
A AND x2 is B THEN y is a�x1+b�x2+ c, where A and B are fuzzy values and
a, b, and c are constants) (Takagi and Sugeno, 1985; Jang, 1993). More complex
functions are possible to use in higher-order rules.

5. Fuzzy rules with degrees of importance and certainty degrees (e.g. IF x1 is A
(DI1) AND x2 is B (DI2) THEN y is C (CFc), where DI1 and DI2 represent the
importance of each of the condition elements for the rule output, and the CFc
represents the strength of this rule (see Kasabov (1996)).

6. Fuzzy rules that represent associations of clusters of data from the problem
space (e.g. Rule j: IF [an input vector x is in the input cluster defined by
its centre (x1 is Aj, to a membership degree of MD1j, AND x2 is Bj, to a
membership degree of MD2j) and by its radius Rj-in] THEN [y is in the output
cluster defined by its centre (y is C, to a membership degree of MDc) and by
its radius Rj-out, with Nex(j� examples represented by this rule]. These are the
EFuNN rules discussed in Chapter 3.

7. Temporal rules (e.g. IF x1 is present at a time moment t1 (with a certainty
degree and/or importance factor of DI1) AND x2 is present at a time moment
t2 (with a certainty degree/importance factor DI2) THEN y is C (CFc)).

8. Temporal recurrent rules (e.g., IF x1 is A (DI1) AND x2 is B (DI2) AND y at
the time moment (t −k) is C THEN y at a time moment (t +n) is D (CFc)).

Evolving Neuro-Fuzzy Inference Models 143

9. Type-2 fuzzy rules, that is, fuzzy rules of the form of: IF x is A∼ AND y is B∼

THEN z is C∼ , where A∼, B∼, and C∼ are type-2 fuzzy membership functions
(see the extended glossary, and also the section in this chapter on type-2 ECOS).

Generic Methods for Rule Extraction from KBNN

There are several methods for rule extraction from a KBNN. Three of them are
explained below:

1. Rule extraction through activating a trained KBNN on input data and observing
the patterns of activation (“the short-term memory”). The method is not
practical for online incremental learning as past data may not be available
for a consecutive activation of the trained KBNN. This method is widely used
in brain research (e.g. analysing MRI, fMRI, and EEG patterns and signals to
detect rules of behaviour.

2. Rule extraction through analysis of the connections in a trained KBNN (“the
long-term memory”). This approach allows for extracting knowledge without
necessarily activating the connectionist system again on input data. It is appro-
priate for online learning and system improvement. This approach is not yet
used in brain study as there are no established methods thus far for processing
information stored in neuronal synapses.

3. Combined methods of (1) and (2). These methods make use of the above two
approaches.

A seminal work on fuzzy rule extraction from KBNN is the publication by Mitra
and Hayashi (2000).

Methods for Inference over Rules Extracted from KBNN

In terms of applying the extracted from a KBNN rules to infer new information,
there are three types of methods used in the KBNN:

1. The rule learning and rule inference modules constitute an integral structure
where reasoning is part of the rule learning, and vice versa. This is the case in
all fuzzy neural networks and of most of the neuro-fuzzy inference systems.

2. The rules extracted from a KBNN are interpreted in another inference machine.
The learning module is separated from the reasoning module. This is a main
principle used in many AI and expert systems, where the rule base acquisition
is separated from the inference machine.

3. The two options from above are possible within one intelligent system.

Figure 5.1 shows a general scheme of a fuzzy inference system. The decision-
making block is the fuzzy inference engine that performs inference over fuzzy
rules and data from the database. The inference can be realized in a connectionist
structure, thus making the system a neuro-fuzzy inference system.

144 Evolving Connectionist Systems

Learning fuzzy rules

Fuzzy data/Exact data

Exact queries/Fuzzy queries

Fuzzification

Fuzzy inference
machine

Fuzzy rule base

User interface

Defuzzification

Data base (Fuzzy)

Membership functions

Fig. 5.1 A general diagram of a fuzzy inference system (from Kasabov (1996), ©MIT Press, reproduced with
permission).

5.1.2 Adaptive Neuro-Fuzzy Inference Systems (ANFIS)

ANFIS (Jang, 1993) implements Takagi–Sugeno fuzzy rules in a five-layer MLP
network. The first layer represents fuzzy membership functions. The second and
the third layers contain nodes that form the antecedent parts in each rule. The
fourth layer calculates the first-order Takagi–Sugeno rules for each fuzzy rule. The
fifth layer – the output layer – calculates the weighted global output of the system
as illustrated in Fig. 5.2a and b.

The backpropagation algorithm is used to modify the initially chosen
membership functions and the least mean square algorithm is used to determine
the coefficients of the linear output functions. Here, the min and the max functions
of a fuzzy inference method (Zadeh, 1965) are replaced by differentiable functions.

As many rules can be extracted from a trained ANFIS as there are a predefined
number of rule nodes. Two exemplar sets of fuzzy rules learned by an ANFIS
model are shown below (see also Fig. 5.2):

Rule 1: If x is A1 and y is B1, then f1 = p1x+q1y + r1

Rule 2: If x is A2 and y is B2, then f2 = p2x+q2y + r2

where x and y are the input variables; A1, A2, B1 and B2 are the membership
functions; f is the output; and p, q, and r are the consequent parameters.

Evolving Neuro-Fuzzy Inference Models 145

Fig. 5.2 (a) An exemplar set of two fuzzy rules and the inference over them that is performed in an ANFIS
structure; (b) the exemplar ANFIS structure for these two rules (see Jang (1993) and the MATLAB Tutorial book,
Fuzzy Logic Toolbox).

By employing a hybrid learning procedure, the proposed architecture can refine
fuzzy if–then rules obtained from human experts to describe the input–output
behaviour of a complex system. If human expertise is not available, reasonable
initial membership functions can still be set up intuitively and the learning process
can begin to generate a set of fuzzy if–then rules to approximate a desired dataset.

ANFIS employs a multiple iteration learning procedure and has a fast conver-
gence due to the hybrid learning algorithm used. It does not require preselection of
the number of the hidden nodes; they are defined as the number of combinations
between the fuzzy input membership functions.

Despite the fact that ANFIS is probably the most popular neuro-fuzzy inference
system thus far, in some cases it is not adequate to use. For example, ANFIS cannot
handle problems with high dimensionality, for example, more than 10 variables
(we are not talking about 40,000 gene expression variables) as the complexity of the
system becomes incredible and the million of rules would not be comprehensible
by humans. ANFIS has a fixed structure that cannot adapt to the data in hand,
therefore it has limited abilities for incremental, online learning.

There can be only one output from an ANFIS. This is due to the nature of
the format of the fuzzy rules it represents. Thus ANFIS can only be applied to
tasks such as prediction or approximation of nonlinear functions where there
is only one output. The number of membership functions associated with each
input and output node cannot be adjusted, only their shape. Prior choice of
membership functions is a critical issue when building the ANFIS system. There
are no variations apart from the hybrid learning rule available to train ANFIS.

In contrast to ANFIS, incremental adaptive learning and local optimisation in
a fuzzy-neural inference system would allow for tracing the process of knowledge

146 Evolving Connectionist Systems

emergence, and for analysing how rules change over time. And this is the case
with the two neuro-fuzzy evolving systems presented in the rest of this chapter.

5.2 Hybrid Neuro-Fuzzy Inference System (HyFIS)

5.2.1 A General Architecture

HyFIS (Kim and Kasabov, 1999) consists of two main parts (Fig. 5.3):

1. A fuzzy analysis module for fuzzy rule extraction from incoming data with the
use of Wang’s method (1994)

2. A connectionist module that implements and tunes the fuzzy rules through
applying the backpropagation algorithm (see Fig. 3.1)

The system operates in the following mode.

1. Data examples (x, y) are assumed to arrive in chunks of m (as a partial case,
m = 1).

2. For the current chunk Ki, consisting of mi examples, ni fuzzy rules are extracted
as described below. They have a form illustrated with the following example.
IF x1 is Small AND x2 is Large THEN y is Medium (certainty 0.7)

3. The ni fuzzy rules are inserted in the neuro-fuzzy module, thus updating the
current structure of this module.

4. The updated neuro-fuzzy structure is trained with the backpropagation
algorithm on the chunk of data Ki, or on a larger dataset if such is available.

5. New data x′ that do not have known output vectors, are propagated through
the neuro-fuzzy module for recall.

Fig. 5.3 A schematic block diagram of HyFIS (from Kim and Kasabov (1999)).

Evolving Neuro-Fuzzy Inference Models 147

The fuzzy rule extraction method is illustrated here on the following two examples
of input–output data (the chunk consists of only two examples):

examp1 � �x1 = 0�6� x2 = 0�2� y = 0�2�

examp2 � �x1 = 0�4� x2 = 0� y = 0�4�

These examples are fuzzified with membership functions (not shown here) defined
in the neuro-fuzzy module, or initialised if this is the first chunk of data, for
example:

examp1 � �x1 = Medium�0�8�� x2 = Small�0�6�� y = Small�0�6��

examp2 � �x1 = Medium�0�8� � x2 = Small�1�� y = Medium�0�8��

Here we have assumed that the range of the three variables x1, x2, and y is [0,1]
and there are three membership functions uniformly distributed on this range
(Small, Medium, Large).

Each of the examples can be now represented as a fuzzy rule of the Zadeh–
Mamdani type:

Rule 1: IF x1 is Medium and x2 is Small THEN y is Small.
Rule 2: IF x1 is Medium and x2 is Small THEN y is Medium.

The rules now can be inserted in the neuro-fuzzy modules, but in this particular
case they are contradictory rules; i.e. they have the same antecedent part but
different consequent part. In this case there will be a certainty degree calculated
as the product of all the membership degrees of all the variables in the rule, and
only the rule with the highest degree will be inserted in the neuro-fuzzy system.

Rule 1: Certainty degree CF1 = 0�8∗0�6∗0�6 = 0�288 �5�1�
Rule 2: Certainty degree CF2 = 0�8∗1∗0�8 = 0�64

Only Rule 2 will be inserted in the connectionist structure.

5.2.2 Neuro-Fuzzy Inference Module

A block diagram of a hypothetical neuro-fuzzy module is given in Fig. 5.4.
It consists of five layers: layer one is the input layer, layer two is the input
membership functions layer, layer three is the rule layer, layer four is the output
membership function layer, and layer five is the output layer.

Layer three performs the AND operation calculated as the min function on the
incoming activation values of the membership function nodes. The membership
functions are of a Gaussian type. Layer four performs the OR operation, calculated
as the max function on the weighted activation values of the rule nodes connected
to nodes in layer four:

Oj�4� = max 	Oi�3�wi
j� (5.2)

148 Evolving Connectionist Systems

Fig. 5.4 The structure of the neuro-fuzzy module of HyFIS (from Kim and Kasabov (1999)).

Layer five performs a centre of area defuzzification:

Ol�5� =∑
Oj�4�Cj�4��j�4�/

∑
Oj�4��j�4� (5.3)

where Ol�5� is the activation of the lth output node; Oj�4� is the activation of the jth
node from layer 4 that represents a Gaussian output membership function with a
centre Cj�4� and a width of �j�4��

Through the backpropagation learning algorithm the connection weights wi
j as
well as the centres and the width of the membership functions are adjusted to
minimize the mean square error over the training dataset (or the current chunk
of data).

5.2.3 Modelling and Prediction of the Gas-Furnace Data with HyFIS

In this experiment 200 data examples were drawn randomly from the gas-furnace
data time series (Box and Jankins (1970); see Chapter 1); 23 fuzzy rules were
extracted from them and were inserted in an initial neuro-fuzzy structure (black
circles in Fig. 5.5). Two new rules were extracted from the rest of the 92 data
examples (inserted also in structure: the empty circles).

This was trained on the 200 examples and tested and incrementally evolved on
the rest 92 Examples. The test results were compared with similar results obtained

Evolving Neuro-Fuzzy Inference Models 149

Fig. 5.5 The initial structure of HyFIS for the gas-furnace time-series prediction (the filled circles represent the
initial 2 fuzzy rules inserted before training), and the resulted HyFIS structure after training is performed (the
empty circles represent newly created rules; from Kim and Kasabov (1999)).

Table 5.1 A comparative analysis of the test results of different fuzzy neural networks and neuro-fuzzy inference
models for the prediction of the gas-furnace time series. All the models, except HyFIS, use a prior fixed structure
that does not change during training. HyFIS begins training with no rule nodes and builds nodes based on
fuzzy rules extracted from data in an online mode (from Kim and Kasabov (1999)).

Model name and reference Number of inputs Number of rules Model error (MSE)

ARMA (Box and Jenkins, 1970) 5 — 0.71
Takagi–Sugeno model (1985) 6 2 0.068
(Hauptman and Heesche, 1995) 2 10 0.134
ANFIS (Jang, 1993) 2 25 0�73 × 10−3

FuNN (Kasabov et al., 1997) 2 7 0�51 × 10−3

HyFIS (Kim and Kasabov, 1999) 2 15 0�42 × 10−3

with the use of other statistical connections, fuzzy, and neuro-fuzzy techniques as
shown in Table 5.1.

After training with the 200 examples the updated rules can be extracted from the
neuro-fuzzy structure. The membership functions are modified from their initial
forms, as shown in Fig. 5.6.

5.3 Dynamic Evolving Neuro-Fuzzy Inference
Systems (DENFIS)

5.3.1 General Principles

The dynamic evolving neuro-fuzzy system, DENFIS, in its two modifications – for
online and for off-line learning – use the Takagi–Sugeno type of fuzzy inference

150 Evolving Connectionist Systems

Fig. 5.6 The initial and the modified membership functions for the input variables u�t − 4� and y�t − 1�
and the output variable y�t� after certain epochs of training HyFIS on the gas-furnace data are performed
(from Kim and Kasabov (1999)).

method (Kasabov and Song, 2002). The inference in DENFIS is performed on m
fuzzy rules indicated as follows.

⎧
⎪⎨

⎪⎩

if x1 is R11 and x2 is R12 and � � � and xq is R1q
 then y is f1�x1
 x2
 � � �
 xq�

if x1 is R21 and x2 is R22 and � � � and xq is R2q
 then y is f2�x1
 x2
 � � �
 xq�

if x1 is Rm1 and x2 is Rm2 and � � � and xq is Rmq
 then y is fm�x1
 x2
 � � �
 xq�
(5.4)

where xj is Rij, i = 1
 2
 � � �
m; j = 1
 2
 � � �
 q, are m × q fuzzy propositions
that form m antecedents for m fuzzy rules respectively; xj, j = 1
 2
 � � �
 q, are
antecedent variables defined over universes of discourse Xj, j = 1
 2
 � � �
 q, and
Rij, i = 1
 2
 � � �
m; j = 1
 2
 � � �
 q are fuzzy sets defined by their fuzzy membership
functions
Rij: Xj → �0
 1�
 i = 1
 2
 � � �
m; j = 1
 2
 � � �
 q. In the consequent parts of
the fuzzy rules, y is the consequent variable, and crisp functions fi, i = 1
 2
 � � �
m,
are employed.

In both online and off-line DENFIS models, fuzzy membership functions trian-
gular type can be of that depend on three parameters, a, b
 and c, as given below:

Evolving Neuro-Fuzzy Inference Models 151

�x� = mf�x
 a
 b
 c� =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
 x ≤ a

x−a

b−a

 a ≤ x ≤ b

c −x

c −b

 b ≤ x ≤ c

0� c ≤ x

(5.5)

where b is the value of the cluster centre on the variable x dimension; a = b−d ×
Dthr; c = b+d ×Dthr; and d = 1�2 ∼ 2; the threshold value Dthr is a clustering
parameter (see the evolving clustering method ECM presented in Chapter 2).

If fi�x1
 x2
 � � �
 xq� = Ci, i = 1
 2
 � � �
m, and Ci are constants, we call this inference
a zero-order Takagi–Sugeno type fuzzy inference system. The system is called a
first-order Takagi–Sugeno fuzzy inference system if fi�x1
 x2
 � � �
 xq�, i = 1
 2
 � � �
m,
are linear functions. If these functions are nonlinear functions, it is called a high-
order Takagi–Sugeno fuzzy inference system.

5.3.2 Online Learning in a DENFIS Model

In the DENFIS online model, the first-order Takagi–Sugeno type fuzzy rules
are employed and the linear functions in the consequence parts are created
and updated through learning from data by using the linear least-square
estimator (LSE).

For an input vector x0 = �x1
0x2

0� � � xq
0�, the result of inference y0(the output of

the system) is the weighted average of each rule’s output indicated as follows.

y0 = �i=1
m�ifi�x1
0
 x2

0
 � � �
 xq
0�

�i=1
m�i

(5.6)

where �i =
q∏

j=1

�Rij �xj0�� i = 1
 2
 � � �m� j = 1
 2
 � � �
 q� (5.7)

In the DENFIS online model, the first-order Takagi–Sugeno type fuzzy rules are
employed and the linear functions in the consequences can be created and updated
by linear least-square estimator on the learning data. Each of the linear functions
can be expressed as follows.

y = �0 +�1x1 +�2x2 +��� +�qxq� (5.8)

For obtaining these functions a learning procedure is applied on a dataset, which
is composed of p data pairs {([xi1
 xi2
 � � �
 xiq], yi�, i = 1
 2
 � � �
 p}. The least-
square estimator of � = ��0 �1 �2� � ��q�

T , is calculated as the coefficients b =
�b0 b1 b2� � �bq�

T , by applying the following formula,

b = �AT A�−1AT y (5.9)

152 Evolving Connectionist Systems

where

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 x11 x12 � � � x1q

1 x21 x22 � � � x2q

� � � � �
� � � � �
� � � � �
1 xp1 xp2 � � � xpq

⎞

⎟
⎟
⎟
⎟
⎟
⎠

and y = �y1 y2� � �yp�
T . A weighted least-square estimation method is used here as

follows.

bw = �AT W A�−1AT Wy
 (5.10)

where

W =

⎛

⎜
⎜
⎜
⎝

w1 0 � � � 0
0 w2 � � � 0
���

���
���

���
0 � � � � � � wp

⎞

⎟
⎟
⎟
⎠

and wj is the distance between jth example and the corresponding cluster centre,
j = 1
 2
 � � �
 p.

We can rewrite Eqs. (5.9) and (5.10) as follows.

{
P = �AT A�−1

b = P AT y
(5.11)

{
Pw = �AT W A�−1

bw = PwAT W y
(5.12)

Let the kth row vector of matrix A defined in Eq. (5.9) be ak
T = �1 xk1 xk2 � � � xkq�

and the kth element of y be yk; then b can be calculated iteratively as follows.

⎧
⎨

⎩

bk+1 = bk + Pk+1ak+1�yk+1 − ak+1
T bk�

Pk+1 = Pk−
Pkak+1 ak+1

T Pk

1+ ak+1
T Pkak+1

(5.13)

for k = n
n+1
 � � �
 p−1.
Here, the initial values of Pn and bn can be calculated directly from Eq. (5.12)

with the use of the first n data pairs from the learning dataset.

Evolving Neuro-Fuzzy Inference Models 153

Equation (5.13) is the formula of recursive LSE. In the DENFIS online model,
we use a weighted recursive LSE with forgetting factor defined as the following
equations

bk+1 = bk +wk+1Pk+1ak+1�yk+1 − ak+1
T bk�

Pk+1 = 1

�

[

Pk–
wk+1Pkak+1 ak+1

T

�+ ak+1
T Pkak+1

Pk

]

k = n
n+1
 � � �
 p−1 (5.14)

where w is the weight defined in Eq. (5.10) and � is a forgetting factor with a
typical value between 0.8 and 1.

In the online DENFIS model, the rules are created and updated at the same
time with the input space partitioning using the online evolving clustering method
(ECM) and Eqs. (5.8) and (5.14). If no rule insertion is applied, the following steps
are used for the creation of the first m fuzzy rules and for the calculation of the
initial values P and b of the functions.

1. Take the first n0 learning data pairs from the learning dataset.
2. Implement clustering using ECM with these n0 data to obtaining m cluster

centres.
3. For every cluster centre Ci, find pi data points whose positions in the input

space are closest to the centre, i = 1
 2
 � � �
m.
4. For obtaining a fuzzy rule corresponding to a cluster centre, create the

antecedents of the fuzzy rule using the position of the cluster centre and
Eq. (5.8). Using Eq. (5.12) on pi data pairs calculate the values of P and b of
the consequent function. The distances between pi data points and the cluster
centre are taken as the weights in Eq. (5.12). In the above steps, m, n0, and p
are the parameters of the DENFIS online learning model, and the value of pi

should be greater than the number of input elements, q.

As new data pairs are presented to the system, new fuzzy rules may be created and
some existing rules updated. A new fuzzy rule is created if a new cluster centre
is found by the ECM. The antecedent of the new fuzzy rule is formed by using
Eq. (5.8) with the position of the cluster centre as a rule node. An existing fuzzy
rule is found based on the rule node that is closest to the new rule node; the
consequence function of this rule is taken as the consequence function for the new
fuzzy rule. For every data pair, several existing fuzzy rules are updated by using
Eq. (5.14) if their rule nodes have distances to the data point in the input space
that are not greater than 2 ×Dthr (the threshold value, a clustering parameter).
The distances between these rule nodes and the data point in the input space are
taken as the weights in Eq. (5.14). In addition to this, one of these rules may also
be updated through changing its antecedent so that, if its rule node position is
changed by the ECM, the fuzzy rule will have a new antecedent calculated through
Eq. (5.8).

5.3.3 Takagi–Sugeno Fuzzy Inference in DENFIS

The Takagi–Sugeno fuzzy inference system utilised in DENFIS is a dynamic
inference. In addition to dynamically creating and updating fuzzy rules the DENFIS
online model has some other major differences from the other inference systems.

154 Evolving Connectionist Systems

First, for each input vector, the DENFIS model chooses m fuzzy rules from
the whole fuzzy rule set for forming a current inference system. This operation
depends on the position of the current input vector in the input space. In the case
of two input vectors that are very close to each other, especially in the DENFIS
off-line model, the inference system may have the same fuzzy rule inference group.
In the DENFIS online model, however, even if two input vectors are exactly the
same, their corresponding inference systems may be different. This is because
these two input vectors are presented to the system at different time moments and
the fuzzy rules used for the first input vector might have been updated before the
second input vector has arrived.

Second, depending on the position of the current input vector in the input space,
the antecedents of the fuzzy rules chosen to form an inference system for this
input vector may vary. An example is illustrated in Fig. 5.7a,b where two different
groups of fuzzy inference rules are formed depending on two input vectors x1
and x2, respectively, in a 2D input space. We can see from this example that,
for instance, the region C has a linguistic meaning ‘large’, in the X1 direction
for the Fig. 5.7a group, but for the group of rules from Fig. 5.7b it denotes a
linguistic meaning of ‘small’ in the same direction of X1. The region C is defined
by different membership functions, respectively, in each of the two groups of
rules.

5.3.4 Time-Series Modelling and Prediction with the DENFIS
OnLine Model

In this section the DENFIS online model is applied to modelling and predicting
the future values of a chaotic time series: the Mackey–Glass (MG) dataset (see
Chapter 1), which has been used as a benchmark example in the areas of
neural networks, fuzzy systems, and hybrid systems (see Jang (1993)). This time
series is created with the use of the MG time-delay differential equation defined
below:

dx�t�

dt
= 0�2x�t − ��

1+x10�t − ��
−0�1x�t� (5.15)

To obtain values at integer time points, the fourth-order Runge–Kutta method was
used to find the numerical solution to the above MG equation. Here we assume
that the time step is 0.1, x�0� = 1�2
 � = 17, and x�t� = 0 for t < 0. The task is
to predict the values x�t + 85� from input vectors [x�t − 18� x�t − 12� x�t − 6�x�t�]
for any value of the time t. For the purpose of a comparative analysis, we also
use some existing online learning models applied to the same task. These models
are neural gas, resource-allocating network (RAN), evolving self-organising maps
(ESOM; see Chapter 2) and evolving fuzzy-neural network (EFuNN; Chapter 3).
Here, we estimate the nondimensional error index (NDEI) which is defined as
the root mean square error divided by the standard deviation of the target
series.

The following experiment was conducted: 3000 data points, for t = 201 to 3200,
are extracted from the time series and used as learning (training) data; 500 data

Evolving Neuro-Fuzzy Inference Models 155

I

B

C
D

F
G

H J

K

A

E

x1

I

B

C
D

F
G

H J

K

A

E

x1

A

C

B

A B C

D

C

E

C E D

x2

x2

(a) Fuzzy rule group 1 for a DENFIS

X2

X1

X2

X1

(b) Fuzzy rule group 2 for a DENFIS

Fig. 5.7 Two fuzzy rule groups are formed by DENFIS to perform inference for an input vector x1 (a), and for
an input vector x2 (b) that is entered at a later time moment, all represented in the 2D space of the first two
input variables X1 and X2 (from Kasabov and Song (2002)).

points, for t = 5001 to 5500, are used as testing data. For each of the online models
mentioned above the learning data are used for the online learning processes, and
then the testing data are used with the recalling procedure.

Table 5.2 lists the prediction results (NDEI on test data after online learning)
and the number of rules (nodes, units) evolved (used) in each model.

In another experiment the properties of rule insertion and rule extraction were
utilised where we first obtained a group of fuzzy rules from the first half of the
training data (1500 samples), using the DENFIS off-line model I (introduced in
the next section); then we inserted these rules into the DENFIS online model and

156 Evolving Connectionist Systems

Table 5.2 Prediction results of online learning models on the Mackey–Glass test data.

Methods Fuzzy rules (DENFIS)
Rule nodes (EFuNN)
Units (Others)

NDEI for testing data

Neural gas (Fritzke,1994) 1000 0.062
RAN (Platt,1991) 113 0.373
RAN (other parameters) 24 0.17
ESOM (Deng and Kasabov, 2002) (Chapter 2) 114 0.32
ESOM (other parameters) 1000 0.044
EFuNN (Kasabov, 2001) (Chapter 3) 193 0.401
EFuNN (other parameters) 1125 0.094
DENFIS (Kasabov and Song, 2002) 58 0.276
DENFIS (other parameters) 883 0.042
DENFIS with rule insertion 883 0.033

let it learn continuously from the next half of the learning data (1500 samples).
Then, we tested the model on the test data.

Figures 5.8a,b,c display the test errors (from the recall processes on the test
data) of DENFIS online model with different number of fuzzy rules:

DENFIS online model with 58 fuzzy rules
DENFIS online model with 883 fuzzy rules (different parameter values are used
from those in the model above)
DENFIS online model with 883 fuzzy rules that is evolved after an initial set of
rules was inserted

5.3.5 DENFIS Off-Line Learning Model

The DENFIS online model presented thus far can be used also for off-line, batch
mode training, but it may not be very efficient when used on comparatively small
datasets. For the purpose of batch training the DENFIS online model is extended
here to work efficiently in an off-line, batch training mode.

Two DENFIS models for off-line learning are developed and presented here:
a linear model, model I, and a MLP-based model, model II.

A first-order Takagi–Sugeno type fuzzy inference engine, similar to the DENFIS
online model, is employed in model I, and an extended high-order Takagi–Sugeno
fuzzy inference engine is used in model II. The latter employs several small-
size, two-layer (the hidden layer consists of two or three neurons) multilayer
perceptrons to realise the function f in the consequent part of each fuzzy rule
instead of using a function that has a predefined type.

The DENFIS off-line learning process is implemented in the following way.

• Cluster (partition) the input space to find n cluster centres (n rule nodes, nrules)
by using the off-line evolving clustering method with constrained optimisation
(ECMc; see Chapter 2).

Evolving Neuro-Fuzzy Inference Models 157

Fig. 5.8 Prediction error of DENFIS online (a)(b)(c) and off-line (d)(e)(f) models on test data taken from the
Mackey–Glass time series (from (Kasabov and Song (2002)).

• Create the antecedent part for each fuzzy rule using Eq. (5.8) and also the
current position of the cluster centre (rule node).

• Find n datasets, each of them including one cluster centre and p learning data
pairs that are closest to the centre in the input space. In the general case, one
data pair can belong to several clusters.

• For model I, estimate the functions f to create the consequent part for each
fuzzy rule using Eq. (5.10) or Eq. (5.12) with n datasets; the distance between
each data point and its corresponding centre is represented as a connection
weight.

• For model II, each consequent function f of a fuzzy rule (rule node, cluster
centre) is learned by a corresponding MLP network after training it on the
corresponding dataset with the use of the backpropagation algorithm.

158 Evolving Connectionist Systems

5.3.6 Time-Series Modelling and Prediction with the DENFIS
Off-Line Model

Dynamic time-series modelling of complex time series is a difficult task, especially
when the type of the model is not known in advance. In this section, we applied
the two DENFIS off-line models for the same task of Mackey–Glass time-series
prediction. For comparison purposes two other well-known models, adaptive
neural-fuzzy inference system (ANFIS; Jang (1993)) and a multilayer perceptron
trained with the backpropagation algorithm (MLP-BP; Rumelhart et al. (1986)) are
also used for this task under the same conditions.

In addition to the nondimensional error index (NDEI), in the case of off-line
learning, the learning time is also measured as another comparative criterion.
Here, the learning time is the CPU-time (in seconds) consumed by each method
during the learning process in the same computing environment (MATLAB, UNIX
version 5.5).

Table 5.3 lists the off-line prediction results of MLP, ANFIS, and DENFIS, and
these results include the number of fuzzy rules (or rule nodes) in the hidden layer,
learning epochs, learning time (CPU-time), NDEI for training data, and NDEI for
testing data. The best results are achieved in the DENFIS II model.

In Figures 5.8d,e,f the prediction test error on the same test data is shown for
the following three DENFIS off-line learning models,

DENFIS off-line mode I with 116 fuzzy rules
DENFIS off-line mode I with 883 fuzzy rules
DENFIS off-line mode II with 58 fuzzy rules

The prediction error of DENFIS model II with 58 rule nodes is the lowest one.

5.3.7 Rule Extraction from DENFIS Models

DENFIS allow for rules to be extracted at any time of the system operation. The
rules are first-order Takagi–Sugeno rules.

Table 5.3 Prediction results of off-line learning models on Mackey–Glass training and test data.

Methods Neurons or rules Epochs Training time (s) Training NDEI Testing NDEI

MLP-BP 60 50 1779 0.083 0.090
MLP-BP 60 500 17928 0.021 0.022
ANFIS 81 50 23578 0.032 0.033
ANFIS 81 200 94210 0.028 0.029
DENFIS I 116 2 352 0.068 0.068
DENFIS I 883 2 1286 0.023 0.019
DENFIS II 58 100 351 0.017 0.016

Evolving Neuro-Fuzzy Inference Models 159

This is illustrated on the gas-furnace time-series dataset. A DENFIS system is
trained on part of the data. The system approximates this data with a RMSE
of 0.276 and NDEI of 0.081; see Fig. 5.9a. There are 11 rule nodes created that
partition the input space as shown in Fig. 5.9b. Eleven rules are extracted, each of
them representing the 11 rule nodes as shown in Fig. 5.9c.

(a)

(b)

Fig. 5.9 (a) The trained DENFIS approximates the gas-furnace time-series data; (b) partitioning of the input
space by the 11 evolved rule nodes in DENFIS; (Continued overleaf)

160 Evolving Connectionist Systems

Rule 1: if X1 is (0.44 0.50 0.57) and X2 is (0.45 0.52 0.58)
then Y = 0.53 – 0.58 ∗ X1 + 0.53 ∗ X2

Rule 2: if X1 is (0.23 0.29 0.36) and X2 is (0.63 0.69 0.76)
then Y = 0.52 – 0.52 ∗ X1 + 0.51 ∗ X2

Rule 3: if X1 is (0.65 0.71 0.78) and X2 is (0.25 0.32 0.38)
then Y = 0.45 – 0.49 ∗ X1 + 0.60 ∗ X2

Rule 4: if X1 is (0.63 0.70 0.76) and X2 is (0.14 0.20 0.27)
then Y = 0.41 – 0.43 ∗ X1 + 0.60 ∗ X2

Rule 5: if X1 is (0.50 0.56 0.63) and X2 is (0.33 0.39 0.46)
then Y = 0.48 – 0.53 ∗ X1 + 0.59 ∗ X2

Rule 6: if X1 is (0.85 0.91 0.98) and X2 is (0.05 0.12 0.18)
then Y = 0.54 – 0.55 ∗ X1 + 0.44 ∗ X2

Rule 7: if X1 is (0.26 0.32 0.39) and X2 is (0.51 0.58 0.64)
then Y = 0.54 – 0.59 ∗ X1 + 0.50 ∗ X2

Rule 8: if X1 is (0.23 0.29 0.36) and X2 is (0.74 0.81 0.87)
then Y = 0.51 – 0.52 ∗ X1 + 0.52 ∗ X2

Rule 9 if X1 is (0.51 0.57 0.64) and X2 is (0.55 0.62 0.68)
then Y = 0.59 – 0.61 ∗ X1 + 0.46 ∗ X2

Rule 10: if X1 is (0.01 0.08 0.14) and X2 is (0.77 0.83 0.90)
then Y = 0.53 – 0.51 ∗ X1 + 0.49 ∗ X2

Rule 11: if X1 is (0.19 0.26 0.32) and X2 is (0.83 0.90 0.96)
then Y = 0.53 – 0.51 ∗ X1 + 0.50 ∗ X2

Fig. 5.9 (continued) (c) Takagi–Sugeno fuzzy rules extracted from a trained DENFIS model on the gas-furnace
time-series dataset.

5.3.8 DENFIS and EFuNN

DENFIS achieved better results in some aspects when compared with the growing
neural gas (Fritzke, 1995), RAN (Platt, 1991), EFuNN (Chapter 3), and ESOM
(Chapter 2) in the case of online learning of a chaotic time series. DENFIS off-line
learning produces comparable results with ANFIS and MLP.

DENFIS uses a local generalisation, like EFuNN and CMAC neural networks
(Albus, 1975), therefore it needs more training data than the models that use global
generalisation such as ANFIS and MLP. During the learning process DENFIS forms
an area of partitioned regions, but these regions may not cover the whole input
space. In the recall process, DENFIS would give satisfactory results if the recall
examples appeared inside these regions. In the case of examples outside this area,
DENFIS is likely to produce results with a higher error rate.

Using a different type of rules (see the list of types of rules at the beginning of
the chapter) in an ECOS architecture may lead to different results depending on
the task in hand. ECOS allow for both fuzzy and propositional (e.g. interval) rules
to be used depending on if there is a fuzzy membership layer.

If the ECOS architecture deals with a fuzzy representation, different types
of fuzzy rules can be exploited. For example, for classification purposes,
Zadeh–Mamdani fuzzy rules may give a better result, but for function approxi-
mation and time series prediction a better result may be achieved with the use
of Takagi–Sugeno rules. The latter is demonstrated with a small experiment on
the gas-furnace and on the Mackey–Glass benchmark datasets. Two versions of
EFuNN are compared: the first version uses Zadeh–Mamdani fuzzy rules, and the
second version, Takagi–Sugeno fuzzy rules (Table 5.4).

Evolving Neuro-Fuzzy Inference Models 161

Table 5.4 Comparing two versions of EFuNN: the first version uses Zadeh–Mamdani
fuzzy rules, and the second version Takagi–Sugeno fuzzy rules on the gas-furnace
times-series data, and on the Mackey–Glass time-series data.

EFuNN with
Zadeh–Mamdani
fuzzy rules

EFuNN with
Takagi–Sugeno
fuzzy rules

Gas-furnace time-series data:
number of rule nodes

51 51

Gas-furnace time-series data:
online testing NDEI

0.283 0.156

Mackey–Glass time-series data:
number of rule nodes

151 151

Mackey–Glass time-series data:
online testing NDEI

0.147 0.039

For the same number of rule nodes evolved in the two types of EFuNNs, the
EFuNN that uses the Takagi–Sugeno fuzzy rules gives better results on the time-
series prediction problem for the two benchmark time-series data.

5.4 Transductive Neuro-Fuzzy Inference Models

5.4.1 Principles and Structure of the TWNFI

TWNFI is a dynamic neural-fuzzy inference system with a local generalization,
in which, either the Zadeh–Mamdani type fuzzy inference engine is used, or the
Takagi–Sugeno fuzzy inference is applied. Here, the former case is introduced.
The local generalisation means that in a subspace of the whole problem space
(local area) a model is created that performs generalisation in this area. In the
TWNFI model, Gaussian fuzzy membership functions are applied in each fuzzy
rule for both the antecedent and the consequent parts. A steepest descent (BP)
learning algorithm is used for optimizing the parameters of the fuzzy membership
functions. The distance between vectors x and y is measured in TWNFI in weighted
normalized Euclidean distance defined as follows (the values are between 0 and 1),

�x − y� =
[

1

P

P∑

j=1

wj

∣
∣xj −yj

∣
∣2
] 1

2

(5.16)

where: x, y ∈ RP , and wj are weights.
To partition the input space for creating fuzzy rules and obtaining initial values

of fuzzy rules, the ECM (evolving clustering method) is applied (Chapter 2) and
the cluster centres and cluster radii are respectively taken as initial values of
the centres and widths of the Gaussian membership functions. Other clustering
techniques can be applied as well. A block diagram of the TWNFI is shown in
Fig. 5.10.

162 Evolving Connectionist Systems

Fig. 5.10 A block diagram of the TWNFI method (from Song and Kasabov (2006)).

5.4.2 The TWNFI Learning Algorithm

For each new data vector xq an individual model is created with the application
of the following steps.

Normalize the training dataset and the new data vector xq (the values are
between 0 and 1) with value 1 as the initial input variable weights.

Search in the training dataset in the input space to find Nq training examples
that are closest to xq using weighted normalized Euclidean distance. The value of
Nq can be predefined based on experience, or optimised through the application
of an optimisation procedure. Here we assume the former approach.

Calculate the distances di, i = 1
 2
 � � �
Nq, between each of these data samples
and xq. Calculate the vector weights vi = 1−�di −min�d��, i = 1
 2
 � � �
Nq, min(d)
is the minimum value in the distance vector d = �d1
 d2
 � � �
 dNq].

Use the ECM clustering algorithm to cluster and partition the input subspace
that consists of Nq selected training samples.

Create fuzzy rules and set their initial parameter values according to the
ECM clustering procedure results; for each cluster, the cluster centre is taken as
the centre of a fuzzy membership function (Gaussian function) and the cluster
radius is taken as the width.

Apply the steepest descent method (backpropagation) to optimize the weights
and parameters of the fuzzy rules in the local model Mq following the equations
given below.

Evolving Neuro-Fuzzy Inference Models 163

Search in the training dataset to find Nq samples (the same as Step 2); if
the same samples are found as in the last search, the algorithm goes to Step 8,
otherwise, to Step 3.

Calculate the output value yq for the input vector xq applying fuzzy inference
over the set of fuzzy rules that constitute the local model Mq.
End of the procedure.

The weight and parameter optimization procedure is described below:
Consider the system having P inputs, one output and M fuzzy rules defined

initially through the ECM clustering procedure, the lth rule has the form of:

Rl � If x1 is Fl1 and x2 is Fl2 and � � � xP is FlP
 then y is Gl (5.17)

Here, Flj are fuzzy sets defined by the following Gaussian type membership
function,

GaussianMF = � exp

[

− �x−m�2

2�2

]

(5.18)

and Gl are logarithmic regression functions:

Gl = bl0x
bl1
1 x

bl2
2 · · ·xblp

p (5.19)

Using the modified centre average defuzzification procedure the output value of
the system can be calculated for an input vector xi = �x1
 x2
 � � �
 xP� as follows.

f�xi� =

M∑

l=1
Gl

P∏

j=1
�lj exp

[

−w2
j

(
xij −mlj

)2

2�2
lj

]

M∑

l=1

P∏

j=1
�lj exp

[

−w2
j

(
xij −mlj

)2

2�2
lj

] (5.20)

Here, wj are weights of the input variables.
Suppose the TWNFI is given a training input–output data pair [xi, ti], the system

minimizes the following objective function (a weighted error function):

bl0 �k+1� = bl0 �k�− �b

bl0 �k�
Gl�k�vi

[
f �k��xi�− ti

]
��xi� (5.21)

E = 1

2
vi �f�xi�− ti�

2

(vi are defined in Step 3).
The steepest descent algorithm (BP) is used then to obtain the formulas for the

optimisation of the parameters blj, �lj, mlj, �lj, and wj such that the error E is
minimised:

blj �k+1� = blj �k�−�bGl�k� ln
(
xij

)
vi

[
f �k��xi�− ti

]
��xi� (5.22)

164 Evolving Connectionist Systems

�lj�k+1� = �lj�k�− (5.23)

��vi��xi�

�lj�k�

[
f �k��xi�− ti

] [
Gl�k�− f �k��xi�

]

mlj�k+1� = mlj�k�− (5.24)

�mw2
j �k�vi��xi�

�2
/j�k�

[
f �k��xi�− ti

] [
Gl�k�− f �k��xi�

] [
xij −mlj�k�

]

�lj�k+1� = �lj�k�− (5.25)

��w2
j �k�vi��xi�

�3
/j�k�

[
f �k��xi�− ti

] [
Gl�k�− f �k��xi�

] [
xij −mlj�k�

]2

wj�k+1� = wj�k�− (5.26)

�wwj�k�vi��xi�

�2
/j�k�

[
f �k��xi�− ti

] [
f �k��xi�−Gl�k�

] [
xij −mlj�k�

]2

��xi� =

P∏

j=1
�lj exp

{

−w2
j �k�

[
xij −mlj �k�

]2

2�2
lj �k�

}

M∑

l=1

P∏

j=1
�lj exp

{

−w2
j �k�

[
xij −mlj �k�

]2

2�2
lj �k�

} (5.27)

where �b, ��, �m, �� , and �w and are learning rates for updating the parameters
blj, �lj, mlj, �lj, and wj, respectively.

In the TWNFI training–simulating algorithm, the following indexes are used.

Training data samples: i = 1
 2
 � � �
 N.
Input variables: j = 1
 2
 � � �
 P.
Fuzzy rules: l = 1
 2
 � � �
 M.
Training epochs: k = 1
 2
 � � � .

5.4.3 Applications of TWNFI for Time-Series Prediction

In this section several evolving NFI systems are applied for modelling and
predicting the future values of a chaotic time series: Mackey–Glass (MG) dataset
(see Chapter 1), which has been used as a benchmark problem in the areas of

Evolving Neuro-Fuzzy Inference Models 165

neural networks, fuzzy systems, and hybrid systems. This time series is created
with the use of the MG time-delay differential equation defined below:

dx�t�

dt
= 0�2x�t − ��

1+x10�t − ��
−0�1x�t� (5.28)

To obtain values at integer time points, the fourth-order Runge–Kutta method was
used to find the numerical solution to the above MG equation. Here we assume
that: the time step is 0.1; x�0� = 1�2; � = 17; and x�t� = 0 for t < 0. The task is to
predict the values x�t + 6) from input vectors [x�t − 18�, x�t − 12�, x�t − 6�, x�t�]
for any value of the time t. The following experiment was conducted: 1000 data
points, from t = 118 to 1117, were extracted; the first 500 data were taken as the
training data and another 500 as testing data. For each of the testing data sample a
TWNFI model was created and tested on this data. Figure 5.11 displays the target
data and Table 5.5 lists the testing results represented by NDEI, nondimensional
error index, that is defined as the root mean square error (RMSE) divided by
the standard deviation of the target series. For the purpose of a comparative
analysis, we have quoted the prediction results on the same data produced by
some other methods, which are also listed in Table 5.5. The TNFI method there is
the same as the TWNFI method described in Section 5.2, but there is no weight
optimization (all they are assumed equal to one and do not change during the
model development).

The TWNFI model performs better than the other models. This is a result of the
fine tuning of each local model in TWNFI for each tested example, derived according
to the TWNFI learning procedure. The finely tuned local models achieve a better
local generalisation. For each individual model, created for each test sample, input
variable weights w1q, w2q, w3q, and w4q are derived. Table 5.1 shows the average weight
for each variable across all test samples. The weights suggest a higher importance of
the first, second, and fourth input variables, but not the third one.

Fig. 5.11 The Mackey–Glass case study data: the first half of data (samples 118–617) is used as training data,
and the second half (samples 618–1117) as testing data. An individual TWNFI prediction model is created for
each test data vector, based on the nearest data vectors (from Song and Kasabov (2006)).

166 Evolving Connectionist Systems

Table 5.5 Comparative analysis of test accuracy of several methods
on the MG series.

Model Testing NDEI Weights of input
variables

w1 w2 w3 w4

CC–NN model 0�06 1 1 1 1
Sixth-order polynomial 0�04 1 1 1 1
MLP (BP) 0�02 1 1 1 1
HyFIS 0�01 1 1 1 1
ANFIS 0�007 1 1 1 1
DENFIS 0�006 1 1 1 1
TNFI 0�008 1 1 1 1
TWNFI 0�005 0.95 1.0 0.46 0.79

5.4.4 Applications of TWNFI for Medical Decision Support

A real dataset from a medical institution is used here for experimental analysis
(Marshal et al., 2005) The dataset has 447 samples, collected at hospitals in New
Zealand and Australia. Each of the records includes six variables (inputs): age,
gender, serum creatinine, serum albumin, race, and blood urea nitrogen concen-
trations, and one output: the glomerular filtration rate value (GFR).

All experimental results reported here are based on tencross-validation experi-
ments with the same model and parameters and the results are averaged. In each
experiment 70% of the whole dataset is randomly selected as training data and
another 30% as testing data.

For comparison, several well-known methods are applied on the same problem,
such as the MDRD logistic regression function widely used in the renal clinical
practice (MDRD, see Marshall et al., 2005), MLP neural network (Chapter 3),
adaptive neural fuzzy inference system (ANFIS), and a dynamic evolving neural
fuzzy inference system (DENFIS; this chapter, and also Fig. 5.12), along with the
TWNFI.

Results are presented in Table 5.6. The results include the number of fuzzy
rules (fuzzy models), or neurons in the hidden layer (MLP), the testing RMSE
(root mean square error), the testing MAE (mean absolute error), and the
weights of the input variables (the upper bound for the variable normalization
range).

Two experiments with TWNFI are conducted. The first one applies the trans-
ductive NFI without WDN: all weights’ values are set as ‘1’ and are not changed
during the learning. Another experiment employs the TWNFI learning algorithm.

The experimental results illustrate that the TWNFI method results in a better
accuracy and also depicts the average importance of the input variables represented
as the calculated weights.

For every patient sample, a personalised model is created and used to evaluate
the output value for the patient and to also estimate the importance of the variables
for this patient as shown in Table 5.6. The TWNFI not only results in a better

Evolving Neuro-Fuzzy Inference Models 167

Fig. 5.12 The interface of an adaptive, kidney function evaluation decision support system: GFR-ECOS (from
Marshall et al. (2005)).

accuracy for this patient, but shows the importance of the variables for her or him
that may result in a more efficient personalised treatment.

The transductive neuro-fuzzy inference with weighted data normalization
method (TWNFI) performs a better local generalisation over new data as it
develops an individual model for each data vector that takes into account the
new input vector location in the space, and it is an adaptive model, in the sense
that input–output pairs of data can be added to the dataset continuously and
immediately made available for transductive inference of local models. This type
of modelling can be called ‘personalised’, and it is promising for medical decision

Table 5.6 Experimental results on GFR data using different methods (from Song et al. (2005)).

Model Neurons or rules Test RMSE Test MAE Weights of Input Variables

Age Sex Scr Surea Race Salb
w1 w2 w3 w4 w5 w6

MDRD __ 7.74 5.88 1 1 1 1 1 1
MLP 12 8.38 5.71 1 1 1 1 1 1
ANFIS 36 7.40 5.43 1 1 1 1 1 1
DENFIS 27 7.22 5.21 1 1 1 1 1 1
TNFI 6.8 (average) 7.28 5.26 1 1 1 1 1 1
TWNFI 6.8 (average) 7.08 5.12 0.87 0.70 1 0.93 0.40 0.52

168 Evolving Connectionist Systems

Table 5.7 A personalised model for GFR prediction of a single patient derived with the use of the TWNFI
method for personalised modelling (from Song and Kasabov (2006)).

Input Age Sex Scr Surea Face Salb

Variables 58.9 Female 0.28 28.4 White 38
Weights of input variables (TWNFI) 0.91 0.73 1 0.82 0.52 0.46

Results GFR (desired) MDRD TWNFI
18.0 14.9 16.6

support systems. TWNFI creates a unique submodel for each data sample (see
example in Table 5.7), and usually requires more performing time than an inductive
model, especially in the case of training and simulating on large datasets.

Further directions for research include: (1) TWNFI system parameter optimi-
sation such as optimal number of nearest neighbours; (2) transductive feature
selection; (3) applications of the TWNFI method for other decision support
systems, such as: cardiovascular risk prognosis, biological processes modelling,
and prediction based on gene expression microarray data.

5.5 Other Evolving Fuzzy Rule-Based Connectionist Systems

5.5.1 Type-2 Neuro-Fuzzy Systems

In all models and ECOS presented thus far in this part of the book, we assumed
the following.

• A connection weight is associated with a single number.
• Each neuron’s activation has a numerical value.
• The degree to which an input variable belongs to a fuzzy membership function

is a single numerical value.

In brief, each structural element of an ECOS is associated with a single numerical
value.

The above assumptions may not be appropriate when processing complex infor-
mation such as noisy information (with a random noise added to each data item
that may vary according to a random distribution function).

Here, the ECOS paradigm presented thus far is extended further to using higher-
order representation, for example association of a function rather than a single
value with a connection, with a neuron, or with a membership function. Such an
extension can be superior when:

• Data are time varying (e.g. changing dynamics of a chaotic process).
• Noise is nonstationary.
• Features are nonstationary (they change over time).
• Dealing with inexact human knowledge that changes over time and varies across

humans. Humans, especially experts, change their minds during the process of

Evolving Neuro-Fuzzy Inference Models 169

learning and understanding phenomena. For various people the same concepts
may have different meaning (e.g. the concept of a small salary points to different
salary scales in the United States, Bulgaria, and Sudan).

As a theoretical basis for type-2 ECOS, some principles from the theory of type-2
fuzzy systems can be used (for a detailed description see Mendel (2001)). The
type-2 fuzzy system theory is based on several concepts as explained below.

Zadeh in 1967. This is in contrast to the type-1 fuzzy sets where every element
belongs to the set to a certain membership degree that is represented as a single
number between 0 and 1.

An example of a type-2 fuzzy membership function is given in Fig. 5.13.
Type-2 MF can be used to represent MF that may change over time, or MF that

are interpreted differently by different experts.
Type-2 fuzzy rules are fuzzy rules of the form of: IF x is A∼ AND y is B∼ THEN

z is C∼ , where A∼ , B∼, and C∼ are type-2 fuzzy membership functions. These
rules deal with interval values rather than with single numerical values.

Type-2 fuzzy inference systems are fuzzy rule-based systems that use type-2
fuzzy rules. The inference process consists of the following steps.

Step 1. Fuzzyfication of input data with the use of type-2 fuzzy MF.
Step 2. Fuzzy inference (decision making) with the use of type-2 fuzzy rules. The

inference produces type-2 output MF.
Step 3. Defuzzification that would include a step of type reduction which trans-

forms the type 2 output MF into type 1 MF, and a step of calculating a
single output value from a type-1 MF.

Fig. 5.13 An example of type-2 triangular fuzzy membership function (MF) of a variable x. Although the
centre of the MF is fixed, the left and the right sides may vary. A fuzzification procedure produces min–max
interval membership values as illustrated on a value x′ for the variable x.

170 Evolving Connectionist Systems

The move from type-1 systems to type-2 systems is equivalent to moving from a
2D space to a 3D space of representation and reasoning.

Type-2 EFuNN

In type-2 ECOS each connection has either a function or a numerical min–max
interval value associated with it. For an EFuNN for example that interval could
be formed by the value of the connection weight Wi,j, that represents the fuzzy
coordinate of the ith cluster (rule node ri�, plus/minus the radius of this node
Ri: Wi
 j�Ri� = �Wi
 j −Ri
Wi
 j +Ri�.

A type-2 EFuNN uses type-2 fuzzy MF defined a priori and modified during the
system operation. For each input vector x
 the fuzzification procedure produces
interval membership values. For example, for an input variable xk, we can denote its
membership interval to a type-2 MF A∼ as A∼�xk� = �min�A∼�xk��
 max�A∼�xk���.

Having interval values in a connectionist system requires interval operations
to be applied as part of its inference procedure. The interval operations that are
defined for type-2 fuzzy systems (see Mendel (2001)) can be applied here. The
distance between the input interval A∼�xk� and the rule node ri interval Wi,j(Ri)
is defined as an interval operation, so as the activation of the rule node ri. The
activation of the output MF nodes is calculated also based on multiplication
operation of interval values and scalars, and on summation of interval values.
In Mendel (2001) several defuzzification operations over type-2 fuzzy MF are
presented that can be used in a type-2 EFuNN.

5.5.2 Interval-Based ECOS and Other Ways of Defining
Receptive Fields

Most of the ECOS methods presented in this part of the book used hyperspheres
to define a receptive field of a rule node r. For example, in the ECM and in the
EFuNN models, if a new data vector x falls in this receptive field it is associated
with this node. Otherwise, if the data vector is still within a maximum radius R
distance from the receptive field of r, the node r co-ordinates are adjusted and its
receptive field is increased, but if the data vector is beyond this maximum radius
there will be a new node created to accommodate the data vector x.

Instead of using a hypersphere and a maximum radius R that defines the same
distance for each variable from the input space, a rectangular receptive field can
be used with minimum and maximum interval values for each rule node and for
each variable that is derived through the evolving process. These values can be
made restricted with the use of global minimum and maximum values Min and
Max instead of using a single radius R as is the case in the hypersphere receptive
field. An example is given in Fig. 5.14.

Using intervals and hyperrectangular receptive fields allows for a better parti-
tioning of the problem space and in many cases leads to better classification and
prediction results.

Interval-based receptive fields can be used in both a fuzzy version and a nonfuzzy
version of ECOS. Figure 5.14 applies to both. The extracted rules from a trained

Evolving Neuro-Fuzzy Inference Models 171

y

 node r1
y(r1)max
y(r2)max
y(r1)min

y(r2)min node r2

x(r1)min
x

x(r2)min

x(r2)maxx(r1)max

Fig. 5.14 Using intervals, hyperrectangles (solid lines) for defining receptive fields versus using hyperspheres
(the dotted circles) on a case study of two rule nodes r1 and r2 and two input variables x and y.

ECOS will be interval-based. For example, the rule that represents rule node 1
from Fig. 5.14 will read:

IF x is in the interval [x�r1)min, x�r1)max] AND y is in the interval [y�r1)min,
y�r1)max] THEN class will be (…), with Nr1 examples associated with this rule.

Divide and Split Receptive Fields

Online modification of the receptive fields is crucial for successful online learning.
Some times a receptive field is created for a rule node, but within this receptive
field there is a new example that belongs to a different class. In this case the new
example will be assigned a new node that divides the previous receptive field into
several parts. Each of these parts will be assigned new nodes that will have the
same class label as the ‘mother node’. This approach is very efficient when applied
for online classification in complex multiclass distribution spaces.

Figure 5.15. shows an example where a new class example divides the receptive
field of the existing node from (a), drawn in a 2D space into six new regions
represented by six nodes.

Example

Here a classical classification benchmark problem was used – the classification of
Iris flower samples into three classes – Setosa, Versicolor, and Virginica, based on
four features – sepal length, petal length, sepal width, and petal width. A dataset
of 150 examples, 50 examples of each of the three classes was used (see Fisher
(1936) and also Duda and Hart (1973)). Three types of EFuNNs were evolved
through one-pass learning on the whole dataset of 150 examples. Then each EFuNN
was tested for classification results on the same dataset. The EFuNN with the

172 Evolving Connectionist Systems

y

x

(a)

y

A new class example divides the
receptive filed of the existing node from (a) into 6 new regions
represented by 6 nodes

x

(b)

Fig. 5.15 (a) An existing receptive field of a rule node in a 2D input space; (b) a new class example divides
the receptive field of the existing node from (a) into six new regions represented by six nodes.

hyperspherical receptive field produced three misclassified examples, the EFuNN
with hyperrectangular fields produced two errors, and the EFuNN with the divide
and split receptive fields resulted in no misclassified examples.

5.5.3 Evolving Neuro-Fuzzy System: EFS

In Angelov (2002) an evolving neuro-fuzzy system framework, called EFS, is
introduced that is represented as a connectionist architecture in Fig. 5.16. The
framework is used for adaptive control systems and other applications. Here a
brief presentation of the structure and the learning algorithm of EFS is presented
adopted from Angelov (2002).

The first layer consists of neurons corresponding to the membership functions
of fuzzy sets. The second layer represents the antecedent parts of the fuzzy rules.

Evolving Neuro-Fuzzy Inference Models 173

CoGΠ
Σ

CoGΠ
Σ..............

..... .

a0
m

x1

xn

μ1
1

μn
1

...

μ1
N

μn
N

...

λ1

λN

y1

ym

Layer 1
Fuzzy sets

Layer 2
Antecedents

Layer 3
Normalization

Layer 4
Aggregation

Layer 5
Outputs

a0
1

......
a1

m

a1
1

......

an
1

an
m

......

σ1
1

σn
1

x1
1∗

xn
1∗

......

σ1
N

σn
N

x1
N∗

xn
TN

T1

N∗

Fig. 5.16 Neuro-fuzzy interpretation of the evolving fuzzy system (Angelov, 2002). The structure is not
predefined and fixed; rather it evolves ‘from scratch’ by learning from data simultaneously with the parameter
adjustment/adaptation (reproduced with permission).

It takes as inputs the membership function values and gives as output the firing
level of the ith rule. The third layer of the network takes as inputs the firing levels
of the respective rule and gives as output the normalized firing level. The fourth
layer aggregates the antecedent and the consequent part that represents the local
subsystems (singletons or hyperplanes). Finally, the last, fifth, layer forms the total
output of the evolving fuzzy system performing a weighed summation of local
multiple model outputs.

There are two main algorithms for training an EFS. The first one, called eTS,
is based on combining unsupervised learning with respect to the antecedent
part of the model and supervised learning in terms of the consequent param-
eters, where the fuzzy rules are of the Takagi–Sugeno type, similar to the
DENFIS training algorithm presented in Section 5.3 (Kasabov and Song, 2002).
An unsupervised clustering algorithm is employed to continuously analyze the
input–output data streams and identifies emerging new data structures. It clusters
the input–output space into N fuzzy regions. The clusters define a fuzzy parti-
tioning of the input space into subsets that are obtained by projecting the
cluster centres onto the space of input (antecedent) variables. The learning
algorithm also assigns to each of the clusters a linear subsystem. The eTS learning
algorithm (Angelov, 2002) is a density-based clustering that stems from the
Mountain clustering method and an extension called the Subtractive clustering.

The eTS clustering is based on the recursive calculation of the potential Pt�zt�
of each data point zt in the input–output space zt = Rn+m

�

Pt�zt� = t −1

�t −1��at +1�−2ct +bt

 (5.29)

174 Evolving Connectionist Systems

where

at =
p∑

j=1

(
z

j
t

)2
� bt =

t−1∑

i=1

p∑

j=1

(
z

j
i

)2
� ct =

p∑

j=1

z
j
t f

j
t � f

j
t =

t−1∑

i=1

z
j
i

and the potential of the cluster centres

Pt�z
∗� = �t −1�Pt−1�z

∗�
�t −2�+Pt−1�z

∗�+Pt−1�z
∗�		z∗ − zt−1		2

(5.30)

Existing cluster centres are updated only if the new data zt point is substantially
different from the existing clusters, i.e. when its potential Pt�zt� brings a spatial
innovation in respect to already existing centres.

The second algorithm for training the EFS structure of Zadeh–Mamdani types of
fuzzy rules is called fSPC (learning through distance-based output–input clustering;
Angelov (2002)). The fSPC algorithm is inspired by the statistical process control
(SPC), a method for process variability monitoring. The SPC procedure naturally
clusters the system output data into granules (clusters) that relate to the same
process control conditions and are characterized with similar system behavior.
The output granules induce corresponding granules (clusters) in the input domain
and define the parameters of the rule antecedents:

close = � exp�−0�5�x−x∗
i �

′C−1
xi �x−x∗

i �� (5.31)

where x∗
i is the vector of input means and Cxi is the input covariance matrix.

For outputs that belong to an output granule, i.e. satisfy condition (5.31), the
rule parameters associated with the respective granule are recursively updated
through exponential smoothing.

5.5.4 Evolving Self-Organising Fuzzy Cerebellar Model
Articulation Controller

The cerebellar model articulation controller (CMAC) is an associative memory
ANN that is inspired by some principles of the information processing in the part
of the brain called cerebellum (Albus, 1975).

In Nguyen et al. (2006) an evolving self-organising fuzzy cerebellar model artic-
ulation controller (ESOF-CMAC) is proposed. The method applies an unsuper-
vised clustering algorithm similar to ECM (see Chapter 2), and introduces a
novel method for evolving the fuzzy membership functions of the input variables.
The connectionist structure implements Zadeh–Mamdani fuzzy rules, similar to
the EFuNN structure. A good performance is achieved with the use of cluster
aggregation and fuzzy membership function adaptation in an evolving mode of
learning.

Evolving Neuro-Fuzzy Inference Models 175

5.6 Exercise

Choose a time-series prediction problem and a dataset for it.
Select a set of features for the model.
Create an inductive ANFIS model and validate its accuracy.
Create an inductive HyFIS ANFIS model and validate its accuracy.
Create an inductive DENFIS model and validate its accuracy.
Create a transductive TWNFI model and validate its accuracy.
Answer the following questions.

(a) Which of the above models are adaptive to new data and under what
conditions and constraints?

(b) Which models allow for knowledge extraction and what type of knowledge
can be acquired from them?

5.7 Summary and Open Problems

The chapter presents evolving neuro-fuzzy inference systems for both off-line and
online learning from data, rule insertion, rule extraction, and inference over these
rules. ANFIS is not flexible in terms of changing the number of membership
functions and rules over time, according to the incoming data. HyFIS and DENFIS
can be used as both off-line and online knowledge-based learning systems. Whereas
HyFIS and EFuNN use Zadeh–Mamdani simple fuzzy rules, DENFIS exploits
Takagi–Sugeno first-order fuzzy rules. Each of the above systems has its strengths
and weaknesses when applied to different tasks.

Some major issues need to be addressed in a further study:

1. How to choose dynamically the best inference method in an ECOS for the
current time interval depending on the data flow distribution and on the task
in hand.

2. What type of fuzzy rules and receptive fields are most appropriate for a given
problem and a given problem space? Can several types of rules be used in one
system, complementing each other?

3. How to test the accuracy of a neuro-fuzzy inference system in an online mode
if data come from an open space.

4. How to build transductive, personalised neuro-fuzzy inference systems without
keeping all data samples in a database, but only prototypes and already built
transductive systems in the past.

5.8 Further Reading

More details on related to this chapter issues can be found as follows.

• Fuzzy Sets and Systems (Zadeh, 1965; Terano et al., 1992; Dubois and Prade,
1980, 1988; Kerr, 1991; Bezdek, 1987; Sugeno, 1985)

176 Evolving Connectionist Systems

• Zadeh–Mamdani Fuzzy Rules (Zadeh, 1965; Mamdani, 1977)
• Takagi–Sugeno Fuzzy Rules (Takagi and Sugeno, 1985; Jang, 1995)
• Type-2 Fuzzy Rules and Fuzzy Inference Systems (Mendel, 2001)
• Neuro-fuzzy Inference Systems and Fuzzy Neural Networks (Yamakawa et al.,

1992; Furuhashi, 1993; Hauptmann and Heesche, 1995; Lin and Lee, 1996;
Kasabov, 1996; Feldcamp, 1992; Gupta, 1992; Gupta and Rao, 1994)

• ANFIS (Jang, 1993)
• HyFIS (Kim and Kasabov, 1999)
• DENFIS (Kasabov and Song, 2002)
• Rule Extraction from Neuro-fuzzy Systems (Hayashi, 1991; Mitra and Hayashi,

2001; Duch et al., 1997)
• Neuro-fuzzy Systems as Universal Approximators (Hayashi, 1991)
• Evolving Fuzzy Systems (Angelov, 2002)
• TNFI: Transductive Neuro-fuzzy Inference Systems (Song and Kasabov, 2005)
• TWNFI: Transductive Weighted Neuro-fuzzy Inference Systems (Song and

Kasabov, 2006)

6. Population-Generation-Based
Methods: Evolutionary Computation

Nature’s diversity of species is tremendous. How does mankind evolve in the
enormous variety of variants? In other words, how does nature solve the optimi-
sation problem of perfecting mankind? An answer to this question may be found
in Charles Darwin’s theory of evolution (1858). Evolution is concerned with the
development of generations of populations of individuals governed by fitness
criteria. But this process is much more complex, as individuals, in addition to
what nature has defined for them, develop in their own way: they learn and evolve
during their lifetime. This chapter is an attempt to apply the principle of nature–
nurture duality to evolving connectionist systems. While improving its perfor-
mance through adaptive learning, an individual evolving connectionist system
(ECOS) can improve (optimise) its parameters and features through evolutionary
computation (EC). The chapter is presented in the following sections.

• A brief introduction to EC
• Genetic algorithms (GA) and evolutionary strategies (ES)
• Traditional use of EC as learning and optimisation techniques for ANN
• EC for parameter and feature optimisation of adaptive, local learning models
• EC for parameter and feature optimisation of transductive, personalised models
• Particle swarm intelligence
• Artificial life systems
• Exercise
• Summary and open questions
• Further reading

6.1 A Brief Introduction to EC

Charles Darwin favoured the ‘Mendelian heredity’ explanation that states that
features are passed from generation to generation.

In the early 1800s Jean-Baptiste Lamarck had expounded the view that changes
in individuals over the course of their lives were passed on to their progeny. This
perspective was adopted by Herbert Spencer and became an established view along
with the Darwin’s theory of evolution.

The evolution in nature inspired computational methods called evolutionary
computation (EC). ECs are stochastic search methods that mimic the behaviour of

177

178 Evolving Connectionist Systems

natural biological evolution. They differ from traditional optimisation techniques
in that they involve a search from a population of solutions, not from a single
point, and carry this search over generations. So, EC methods are concerned
with population-based search and optimisation of individual systems through
generations of populations (Goldberg, 1989; Koza, 1992; Holland, 1992, 1998).

Several different types of evolutionary methods have been developed indepen-
dently. These include genetic programming (GP) which evolves programs, evolu-
tionary programming (EP), which focuses on optimising continuous functions
without recombination, evolutionary strategies (ES), which focus on optimising
continuous functions with recombination, and genetic algorithms (GAs), which
focus on optimising general combinatorial problems, the latter being the most
popular technique. EC has been applied thus far to the optimisation of different
structures and processes, one of them being the connectionist structures and
connectionist learning processes (Fogel et al., 1990; Yao, 1993). Methods of EC
include in principle two stages (see Fig. 6.1):

1. A stage of creating new population of individuals
2. A stage of development of the individual systems, so that a system develops

and evolves through interaction with the environment, which is also based on
the genetic material embodied in the system

The process of individual (internal) development has been ignored or neglected
in many EC methods as insignificant from the point of view of the long process
of generating hundreds of generations, each of them containing hundreds and
thousands of individuals.

But my personal concern as an individual – and also as the author of the book –
is that it matters to me not only how much I have contributed to the improvement
of the genetic code of the population that is going to live, possibly, 2,000,000 years
after me, but also how I can improve myself during my lifetime, and how I evolve
as an individual in a particular environment, making the best out of my genetic
material.

ECOS deal with the process of interactive off-line or online adaptive learning
of a single system that evolves from incoming data. The system can either have

Fig. 6.1 A schematic algorithmic diagram of evolutionary computation (EC).

Population-Generation-Based Methods 179

its parameters (genes) predefined, or it can be self-optimised during the learning
process starting from some initial values. ECOS should also be able to improve
their performance and adapt better to a changing environment through evolution,
i.e. through population-based improvement over generations.

There are several ways in which EC and ECOS can be interlinked. For example,
it is possible to use EC to optimise the parameters of an ECOS at a certain time of
its operation, or to use the methods of ECOS for the development of the individual
systems (individuals) as part of the global EC process.

Before we discuss methods for using EC for the optimisation of connectionist
systems, a short introduction to two of the most popular EC techniques – genetic
algorithms and evolutionary strategies – is given below.

6.2 Genetic Algorithms and Evolutionary Strategies

6.2.1 Genetic Algorithms

Genetic algorithms were introduced for the first time in the work of John Holland
in 1975. They were further developed by him and other researchers (Holland,
1992, 1998; Goldberg, 1989; Koza, 1992). The most important terms used in GA
are analogous to the terms used to explain the evolution processes. They are:

• Gene: A basic unit that defines a certain characteristic (property) of an individual
• Chromosome: A string of genes; used to represent an individual or a possible

solution to a problem in the population space
• Crossover (mating) operation: Substrings of different individuals are taken and

new strings (offspring) are produced
• Mutation: Random change of a gene in a chromosome
• Fitness (goodness) function: A criterion which evaluates how good each

individual is
• Selection: A procedure of choosing a part of the population which will continue

the process of searching for the best solution, while the other individuals ‘die’

A simple genetic algorithm consists of steps shown in Fig. 6.2. The process over
time has been ‘stretched’ in space. Whereas Fig. 6.2 shows graphically how a GA
searches for the best solution in the solution space, Fig. 6.3 gives an outline of
the GA.

When using the GA method for a complex multioption optimisation problem,
there is no need for in-depth problem knowledge, nor is there a need for many
data examples stored beforehand. What is needed here is merely a ‘fitness’ or
‘goodness’ criterion for the selection of the most promising individuals (they may
be partial solutions to the problem). This criterion may require a mutation as
well, which is a heuristic approach of trial-and-error type. This implies keeping
(recording) the best solutions at each stages.

Many complex optimisation problems find their way to a solution through
genetic algorithms. Such problems are, for example, the travelling salesman
problem (TSP): finding the cheapest way to visit n towns without visiting a town

180 Evolving Connectionist Systems

Initial
population select

crossover crossover

mutate

crossover

select

the goal state

select

Solution space

Fig. 6.2 A schematic diagram of how a genetic algorithm (GA) works in time (from Kasabov (1996), ©MIT
Press, reproduced with permission).

 1. Initialize population of possible solutions

 2. WHILE a criterion for termination is not reached DO
 {
 2a. Crossover two specimens ("mother and father") and generate new
individuals;
 2b. Select the most promising ones, according to a fitness function;
 2c. Development (if at all);
 2d. Possible mutation (rare) }
 }

Fig. 6.3 A general representation of the GA (from Kasabov (1996), ©MIT Press, reproduced with permission).

twice; the min cut problem: cutting a graph with minimum links between the
cut parts; adaptive control; applied physics problems; optimisation of the param-
eters of complex computational models; optimisation of neural network archi-
tectures (Fogel et al., 1990); and finding fuzzy rules and membership functions
(Furuhashi et al., 1994).

The main issues in using genetic algorithms relate to the choice of genetic
operations (crossover, selection, mutation). In the case of the travelling salesman
problem the crossover operation can be merging different parts of two possible
roads (‘mother’ and ‘father’ roads) until new usable roads are obtained. The
criterion for the choice of the most prospective ones is minimum length (or cost).

A GA offers a great deal of parallelism: each branch of the search tree for a
best individual can be utilised in parallel with the others. That allows for an easy
realisation on parallel architectures. GAs are search heuristics for the ‘best’ instance
in the space of all possible instances. A GA model requires the specification of the
following features.

Population-Generation-Based Methods 181

• Encoding scheme: How to encode the problem in terms of the GA notation: what
variables to choose as genes, how to construct the chromosomes, etc.

• Population size: How many possible solutions should be kept in a population
for their performance to be further evaluated

• Crossover operations: How to combine old individuals and produce new, more
prospective ones

• Mutation heuristic: When and how to apply mutation

In short, the major characteristics of a GA are the following. They are heuristic
methods for search and optimisation. In contrast to the exhaustive search
algorithms, GAs do not evaluate all variants in order to select the best one.
Therefore they may not lead to the perfect solution, but to one which is closest
to it taking into account the time limits. But nature itself is imperfect too (partly
due to the fact that the criteria for perfection keep changing), and what seems to
be close to perfection according to one ‘goodness’ criterion may be far from it
according to another.

6.2.2 Selection, Crossover, and Mutation Operators in EC

The theory of GA and the other EC techniques includes different methods for
selection of individuals from a population, different crossover techniques, and
different mutation techniques.

Selection is based on fitness that can employ several strategies. One of them is
proportional fitness, i.e. ‘if A is twice as fit as B, A has twice the probability of
being selected.’ This is implemented as roulette wheel selection and gives chances to
individuals according to their fitness evaluation as shown in an example in Fig. 6.4.

Other selection techniques include tournament selection (e.g. at every time of
selection the roulette wheel is turned twice, and the individual with the highest fitness
is selected), rank ordering, and so on (Fogel et al., 1990). An important feature of the
selection procedure is that fitter individuals are more likely to be selected.

The selection procedure may also involve keeping the best individuals from
previous generations (if this principle was used by nature, Leonardo Da Vinci
would still be alive, as he was one of the greatest artists ever, presumably having
the best artistic genes). This operation is called elitism.

After the best individuals are selected from a population, a crossover operation is
applied between these individuals. The crossover operator defines how individuals
(e.g. ‘mother’ and ‘father’) exchange genes when creating the offspring. Different
crossover operations can be used, such as one-point crossover (Fig. 6.5), two-point
crossover, etc.

Individual 1 2 3 4 5 6 7 8 9 10

Fitness 2�0 1�8 1�6 1�4 1�2 1�0 0�8 0�6 0�4 0�2

Selection
Chance

0�18 0�16 0�15 0�13 0�11 0�09 0�07 0�06 0�03 0�02

Fig. 6.4 An example of a roulette selection strategy. Each of the ten individuals has its chance to ‘survive’ (to
be selected for reproduction) based on its evaluated fitness.

182 Evolving Connectionist Systems

parents offspring

Fig. 6.5 One-point crossover operation.

Mutation can be performed in several ways, e.g.

• For a binary chromosome, just randomly ‘flip’ a bit (a gene allele).
• For a more complex chromosome structure, randomly select a site, delete the

structure associated with this site, and randomly create a new substructure.

Some EC methods just use mutation and no crossover (‘asexual reproduction’).
Normally, however, mutation is used to search in a ‘local search space’, by allowing
small changes in the genotype (and therefore it is hoped in the phenotype) as it is
in the evolutionary strategies.

6.2.3 Evolutionary Strategies (ES)

Another EC technique is called evolutionary strategies (ES). These techniques use
only one chromosome and a mutation operation, along with a fitness criterion, to
navigate in the solution (chromosomal) space.

In the reproduction phase, the current population, called the parent population,
is processed by a set of evolutionary operators to create a new population called
the offspring population. The evolutionary operators include two main operators:
mutation and recombination; both imitate the functions of their biological counter-
parts. Mutation causes independent perturbation to a parent to form an offspring
and is used for diversifying the search. It is an asexual operator because it involves
only one parent. In GA, mutation flips each binary bit of a parent string at a small,
independent probability pm (which is typically in the range [0.001, 0.01]) to create
an offspring. In ES, mutation is the addition of a zero-mean Gaussian random
number to a parent individual to create the offspring. Let sPA and sOF denote the
parent and offspring vector; they are related through the Gaussian mutation

sOF = sPA + z z ∼ N �0� s� (6.1)

where N�a� s� represents a normal (Gaussian) distribution with a mean a and a
covariance s and ∼ denotes sampling from the corresponding distribution.

ES uses the mutation as the main search operator.
The selection operator is probabilistic in GA and deterministic in ES. Many

heuristic designs, such as the rank-based selection that assigns to the individuals a
survival probability proportional (or exponentially proportional) to their ranking,
have also been studied. The selected individuals then become the new generation

Population-Generation-Based Methods 183

of parents for reproduction. The entire evolutionary process iterates until some
stopping criteria are met. The process is essentially a Markov chain; i.e. the
outcome of one generation depends only on the last. It has been shown that under
certain design criteria of the evolutionary operators and selection operator, the
average fitness of the population increases and the probability of discovering the
global optimum tends towards unity. The search could, however, be lengthy.

6.3 Traditional Use of EC for Learning and Optimisation
in ANN

Before we present in the next section the use of EC for the optimisation of ECOS,
here a brief review of different approaches for using EC for the optimisation of
MLP and other traditional, not evolving, ANN models is presented. Such reviews
have been published by several authors (Yao, 1993; Fogel et al., 1990; Watts and
Kasabov, 1998, 1999).

6.3.1 ANN Topology Determination by GA

The number of layers within a connectionist structure, e.g. MLP, and the number
of nodes within each layer can often have a significant effect upon the performance
of the network. Too many nodes in the hidden layers of the network may cause
the network to overfit the training data, whereas too few may reduce its ability to
generalize.

In Schiffman et al. (1993) the length of the chromosome determined the number
of nodes present, as well as the connectivity of the nodes. This approach to ANN
design was tested in the above paper on a medical classification problem, that of
identifying thyroid disorders and provided networks that were both smaller and
more accurate than manually designed ANNs were.

6.3.2 Selection of ANN Parameters by GA

In addition to the selection of the ANN topology, it is also possible to select
the training parameters for the network. This has been investigated by many
authors: see for example Choi and Bluff (1995), who used a GA to select the
training parameters for the backpropagation training of an MLP. In this work
the chromosome encoded the learning rate, momentum, sigmoid parameter, and
number of training epochs to be used for the backpropagation training of the
network. This technique was tested with several different datasets, including bottle
classification data, where a glass bottle is classified as either being suitable for reuse
or suitable for recycling, and breast cancer data, which classifies tissue samples as
malignant or benign. For each of the test datasets, the genetically derived network
outperformed those networks whose control parameters were manually set, often
by a significant margin.

184 Evolving Connectionist Systems

6.3.3 Training of ANN via GA

For some problems, it is actually more efficient to abandon the more conventional
training algorithms, such as backpropagation, and train the ANN via GA. For some
problems GA training may be the only way in which convergence can be reached.
GA-based training of ANNs has been extensively investigated by Hugo de Garis
(1989, 1993). The networks used in these experiments were not of the MLP variety,
but were instead fully self-connected synchronous networks. These ‘GenNets’ were
used to attempt tasks that were time-dependent, such as controlling the walking
action of a pair of stick legs. With this problem the inputs to the network were the
current angle and angular velocity of the ‘hip’ and ‘knee’ joints of each leg. The
outputs were the future angular acceleration of each of the joints. Both the inputs
and outputs for this problem were time-dependent.

Conventional training methods proved to be incapable of solving this problem,
whereas GenNets solved it very easily. Other applications of GenNets involved
creating ‘production rule’ GenNets that duplicated the function of a production
rule system. These were then inserted into a simulated artificial insect and used to
process inputs from sensor GenNets. The outputs of the production rule GenNets
sent signals to other GenNets to execute various actions, e.g. eat, flee, or mate.

A similarly structured recurrent network was used in Fukuda et al. (1997) to
attempt a similar problem. The application area in this research was using the
genetically trained network to control a physical biped robot. The results gained
from this approach were quite impressive. Not only was the robot able to walk
along flat and sloped surfaces, it was able to generalise its behaviour to deal with
surfaces it had not encountered in training. Comparison of the results gained from
the genetically trained network with those from networks trained by other methods
showed that not only did the genetically trained network train more efficiently
than the others, it was also able to perform much better than the others.

6.3.4 Neuro-Fuzzy Genetic Systems

GAs have been used to optimise membership functions and other parameters in
neuro-fuzzy systems (Furuhashi et al., 1994; Watts and Kasabov, 1998, 1999). An
example is the FuNN fuzzy neural network (Kasabov et al., 1997). It is essentially
an ANN that has semantically meaningful nodes and weights that represent input
and output variables, fuzzy membership functions, and fuzzy rules. Tuning the
membership functions in FuNNs is a technique intended to improve an already
trained network. By slightly shifting the centres of the MFs the overall perfor-
mance of the network can be improved. Because of the number of MFs in even
a moderately sized network, and the degree of variation in the magnitude of the
changes that each MF may require, a GA is the most efficient means of achieving
the optimisation.

Much of the flexibility of the FuNN model is due to the large number of design
parameters available in creating a FuNN. Each input and output may have an
arbitrary number of membership functions attached. The number of combinations
that these options yield is huge, making it quite impractical to search for the

Population-Generation-Based Methods 185

optimal configuration of the FuNN combinatorially. Using a GA is one method of
solving this difficult problem.

Optimisation of FuNN MFs involves applying small delta values to each
of the input and output membership functions. Optimisation of conventional
fuzzy systems by encoding these deltas into a GA structure has been investi-
gated (Furuhashi et al., 1994) and has been shown to be more effective than
manual tuning. The initial GA population is randomly initialised except for one
chromosome, which has all the encoded delta values set to zero to represent the
initial network. This, along with elitism, ensures that the network can only either
improve in performance or stay the same, and never degrade in performance. To
evaluate each individual, the encoded delta values are added to the centre of each
membership function and the recall error over the training datasets is calculated.
In situations where a small number of examples of one class could be overwhelmed
by large numbers of other classes, the average recall error is taken over several
datasets, with each dataset containing examples from one class. The fitness f of an
individual is calculated by the following formula.

f = 1/e (6.2)

where e is the average overall error on the test datasets.

6.3.5 Evolutionary Neuro-Genetic Systems and Cellular Automata

Other research methods combine GA and cellular automata to ‘grow’ cells
(neurons) in a cellular automaton (de Garis, 1993). Here a cellular automaton
(CA) is a simplified simulation of a biological cell, with a finite number of states,
whose behaviour is governed by rules that determine its future state based upon
its current state and the current state of its neighbours. CAs have been used to
model such phenomena as the flocking behaviour of birds and the dynamics of
gas molecules. The advantage of CAs is their ability to produce seemingly complex
dynamic behaviour from a few simple rules.

Applying EC methods in an off-line mode on a closed and compact problem
space of possible solutions, through generations of populations of possible
solutions from this space, is time-consuming and not practical for realtime online
applications. The next sections suggest methods that overcome this problem and
optimise the parameters of ECOS.

6.4 EC for Parameter and Feature Optimisation of ECOS

When an ECOS is evolved from a stream of data we can expect that for a better
performance of the system, along with the structural and the functional evolution
of the model, its different parameters should also evolve. This problem has been
discussed in numerous papers and methods have been introduced (Watts and
Kasabov, 2001, 2002; Kasabov et al., 2003; Minku and Ludemir, 2005).

In this and in the next two sections, we present some other methods for the
optimisation of the parameters and the structures of ECOS.

186 Evolving Connectionist Systems

6.4.1 ES for Incremental Learning Parameter Optimisation

Here, a method for adaptive incremental (possibly, online) optimisation of the
parameters of a learning model using ES is presented on a simple example of
optimising the learning parameters l1 and l2 of the two weight connection matrices
W1 and W2 respectively, in an EFuNN ECOS architecture (see Chapter 3; from
Chan and Kasabov (2004)).

Each individual s�k� = �s
�k�
1 � s

�k�
2 � is a two-vector solution to l1 and l2. Because

there are only two parameters to optimise, the ES method requires only a small
population and a short evolutionary time. In this case, we use one parent and ten
offspring and a small number of generations of genmax = 20. We set the initial
values of s to (0.2,0.2) in the first run and use the previous best solution as initial
values for subsequent runs. Using a nonrandomised initial population encourages
a more localised optimisation and hence speeds up convergence. We use simple
Gaussian mutation with standard deviation 0.1 (empirically determined) for both
parameters to generate new points. For selection, we use the high selection pressure
scheme to accelerate convergence, which picks the best of the joint pool of parents
and offspring to be the next-generation parents.

The fitness function (or the optimisation objective function) is the prediction
error over the last nlast data, generated by using EFuNN model at (t − nlast) to
perform incremental learning and predicting over the last nlast data. The smaller
nlast is, the faster the learning rates adapts and vice versa. Because the effect of
changing the learning rates is usually not expressed immediately but after a longer
period, the fitness function can be noisy and inaccurate if nlast is too small. In this
work we set nlast = 50. The overall algorithm has five steps (Fig. 6.6).

To verify the effectiveness of the proposed online ES, we first train EFuNN (see
Chapter 3) with the first 500 data of the Mackey–Glass series (using x�0� = 1�2 and
� = 17) to obtain a stable model, and then apply online ES to optimise the learning

1 Population Initialisation. Reset generation counter gen. Initialise a population of p parent EFuNNs with the best estimate
(l1

′� l2
′) for the two learning rates of EFuNN:

SPA
�k� =�l1

′� l2
′�� K = �1� 2� � � � � p�

2 Reproduction. Rondomly select one of the P parents, SPA
�r� , to undergo Gaussian mutation defined as a normal distribution

function N to produce a new offspring

S�i�
OF = S�r�

PA +Z�i� Where Z�i� ∼ N�0�� 2�� i = �1� 2� � � � 	�

3 Fitness Evaluation. Apply each of the offspring EFuNN models to perform incremental learning and prediction using data in
the interval [t − tlast� t], where it is the current time moment of the learned temporal process, and tlast is the last moment
of the parameter measure and optimisation in the past. Set the respective prediction error as fitness.

4 Selection. Perform selection

5 Termination. Increment the number of generations (gen). Stop if gen ≥ genmax or if no fitness improvement has been
recorded over the past 3 generations; otherwise go to step (2).

Fig. 6.6 An ES algorithm for online optimisation of two parameters of an ECOS, in this case the learning rates
l1 and l2of an EFuNN (see Chapter 3).

Population-Generation-Based Methods 187

rates over the next 500 data. The corresponding prediction error is recorded.
Example results are shown in Figure 6.7a,b.

Figure 6.7a shows an example of the evolution of the RMSE (used as the fitness
function) and the learning rates. The RMSE decreases, which is a characteristic
of the selection because the best individual is always kept in the population. The
optimal learning rates are achieved quickly after 14 generations.

Figure 6.7b shows the dynamics of the learning rate over the period t =
�500� 1000�. Both learning rates l1 and l2 vary considerably over the entire course
with only short stationary moments, showing that they are indeed dynamic param-
eters. The average RMSE for online prediction one-step-ahead obtained with and
without online EC are 0.0056 and 0.0068, respectively, showing that online EC
is effective in enhancing EFuNN’s prediction performance during incremental
learning.

Evolution of Learning Rate

l2

l1

gen
0

500 550 600 650 700 750 800 850 900 950 1000

0

0

5

10

0.5

1

1.5

2

5 10 15

Evolution of Fitness
(in Average RMSE)

gen
0

8.89

8.9

8.91

8.92

8.93

8.94
× 10–3

5 10 15

(a)

(b)

EC-optimized Learning Rates

t

l1 l2

Fig. 6.7 (a) Evolution of the best fitness and the learning rates over 15 generations; (b) optimised learning
rates l1 and l2 of an EFuNN ECOS over a period of time t =
500� 1000�.

188 Evolving Connectionist Systems

6.4.2 ES for Fuzzy Membership Function Optimisation in ECOS

As an example, here, we apply ES to optimise the fuzzy input and output
membership functions (MFs) at the second and fourth layers of an EFuNN (see
Chapter 3) with the objective of minimising the training error (Chan and Kasabov,
2004). For both the input and output MFs, we use the common triangular function,
which is completely defined by the position of the MF centre.

Given that there are p input variables and pMF fuzzy quantisation levels for
each input variable, m output variables and mMF fuzzy quantisation levels for each
output variable, there are nc = �p× pMF +m×mMF� centres c = �c1� c2� � � � � cnc� to
be optimised.

The ES represents each individual as a (p×pMF +m×mMF) real vector solution to
the positions of the MFs. We use five parents and 20 offspring and a relatively larger
number of generations of genmax = 40. Each individual of the initial population
is a copy of the evenly distributed MFs within the boundaries of the variables.
Standard Gaussian mutation is used for reproduction. Every offspring is checked
for the membership hierarchy constraint; i.e. the value of the higher MF must be
larger than that of the lower MF. If the constraint is violated, the individual is
resampled until a valid one is found.

Box 6.1. ES for membership function optimisation

1) Population Initialisation. Reset generation counter – gen. Initialise a
population of parents �c1

′� c2
′� � � � � cnc

′� with the evenly distributed MFs

s�k�
PA = �c1

′� c2
′� � � � � cnc

′�
2) Reproduction. Randomly select one of the parents, s

�r�
PA, to undergo Gaussian

mutation to produce a new offspring

s�i�
OF = s�r�

PA + z�i� and z�i� ∼ N
(
0� 	2I

)

Resample if the membership hierarchy constraint is violated.
3) Fitness Evaluation. Apply each of the offspring to the model at (t − tlast) to

perform incremental learning and prediction using data in [t − tlast� t]. Set
the respective prediction error as fitness.

4) Selection.
5) Termination. Increment the generation number gen. Stop if gen ≥ genmax,

otherwise go to step 2.

The proposed ES is tested on the same Mackey–Glass series described above.
We first perform incremental training on EFuNN with the first 1000 data of the
Mackey–Glass series to obtain a stable model, and then apply off-line ES during
batch learning (over the same 1000 data) to optimise the input and output MFs.
Example results are shown in Figure 6.8.

Figure 6.8a shows the evolution of the best fitness recorded in each generation.
The unidirectional drop in prediction error shows that the optimisation of MFs has

Population-Generation-Based Methods 189

Fig. 6.8 (a) The evolution of the best fitness from the off-line ES; (b) initial membership functions and
EC-optimised membership functions on an input variable; (c) the frequency distribution of the same input
variable as in (b).

a positive impact on improving model performance. Figure 6.8b shows the initial
MFs and the EC-optimised MFs and Figure 6.8c shows the frequency distribution
of one of the input variables {x�t�

4 }. Clearly, the off-line ES evolves the MFs towards
the high-frequency positions, which maximises the precision for fuzzy quantisation
and in turn yields higher prediction accuracies. The training RMSEs are 0.1129 and
0.1160 for EFuNN with and without off-line ES optimisation, respectively, showing
that the ES-optimised fuzzy MFs are effective in improving EFuNN’s data tracking
performance.

6.4.3 EC for Integrated Parameter Optimisation and Feature
Selection in Adaptive Learning Models

As discussed in Chapter 3, a simple version of EFuNN–ECF (evolving classifier
function), can be applied in both online and off-line modes. When working in
an off-line mode, ECF requires accurate setting of several control parameters to
achieve optimal performance. However, as with other ANN models, it is not always
clear what the best values for these parameters are. EC provides a robust global
optimisation method for choosing values for these parameters.

In this work, EC is applied to optimise the following four parameters of an ECF
model:

• Rmax: The maximum radius of the receptive hypersphere of the rule nodes. If,
during the training process, a rule node is adjusted such that the radius of its
hypersphere becomes larger than Rmax then the rule node is left unadjusted and
a new rule node is created.

• Rmin: The minimum radius of the receptive hypersphere of the rule nodes. It
becomes the radius of the hypersphere of a new rule node.

• nMF: The number of membership functions used to fuzzify each input variable.
• M-of-n: If no rules are activated when a new input vector is entered, ECF

calculates the distance between the new vector and the M closest rule nodes.
The average distance is calculated between the new vector and the rule nodes
of each class. The vector is assigned the class corresponding to the smallest
average distance.

190 Evolving Connectionist Systems

Testing GA-ECF on the Iris Data

Each parameter being optimised by the GA is encoded through standard binary
coding into a specific number of bits and is decoded into a predefined range
through linear normalisation. A summary of this binary coding information is
shown in Table 6.1. Each individual string is the concatenation of a set of binary
parameters, yielding a total string-length ltot = �5+5+3+3� = 16.

The experiments for GA are run using a population size of ten, for ten gener-
ations. For each individual solution, the initial parameters are randomised within
the predefined range. Mutation rate pm is set to 1/ltot, which is the generally
accepted optimal rate for unimodal functions and the lower bound for multimodal
functions, yielding an average of one bit inversion per string. Two-point crossover
is used. Rank-based selection is employed and an exponentially higher probability
of survival is assigned to high-fitness individuals. The fitness function is deter-
mined by the classification accuracy. In the control experiments, ECF is performed
using the manually optimised parameters, which are Rmax = 1, Rmin = 0�01, nMF = 1,
M-of-N = 3. The experiments for GA and the control are repeated 50 times and
between each run the whole dataset is randomly split such that 50% of the data is
used for training and 50% for testing. Performance is determined as the percentage
of correctly classified test data. The statistics of the experiments are presented in
Table 6.2.

The results show that there is a marked improvement in the average accuracy in
the GA-optimised network. Also the standard deviation of the accuracy achieved
by the 50 GA experiments is significantly less than that for the control experiments,
indicating that there is a greater consistency in the experiments using the GA.

Figure 6.9 shows the evolution of the parameters over 40 generations. Each
parameter converges quickly to its optimal value within the first 10 generations,
showing the effectiveness of the GA implementation.

Table 6.1 Each parameter of the ECF being optimised by the GA is encoded
through standard binary coding into a specific number of bits and is decoded into
a predefined range through linear normalisation.

Parameter Range Resolution Number of Bits

Rmax 0.01–0.1 2.81e-3 5
Rmin 0.11–0.8 2.16e-2 5
nMF 1–8 1 3
M-of-N 1–8 1 3

Table 6.2 The results of the GA experiment repeated 50 times and
averaged and contrasted with a control experiment.

Average accuracy (%) Standard dev.

Evolving Parameters 97.96 1.13
Control 93.68 2.39

Population-Generation-Based Methods 191

Figure 6.10 shows the process of GA optimization of the ECF parameters and
features on the case study example of cancer outcome prediction based on clinical
variable (#1) and 11 gene expression variables across 56 samples (dataset is from
Ship et al. 2002).

6.4.4 EC for Optimal Feature Weighting in Adaptive Learning Models

Feature weighting is an alternative form of feature selection. It assigns to each
variable a weighting coefficient that reduces or amplifies its effect on the model
based on its relevance to the output. A variable that has little relevance to the
output is given a small weight to suppress its effect, and vice versa. The purpose
of feature weighting is twofold: first, to protect the model from the random
and perhaps detrimental influence of irrelevant variables and second, to act as
a guide for pruning away irrelevant variables (feature selection) by the size of
the weighting coefficients. Feature weighting/selection are generally implemented
through three classes of methods: Bayesian, incremental/sequential, or stochastic
methods. The first two classes are local methods that are fast and yet susceptible
to local optima; the last class includes EC applications that use computationally
intensive population search to search for the global optimum. Here the algorithm
proposed for ECOS, called weighted data normalisation (WDN; Song and Kasabov
(2006)) belongs to such a class, using the robust optimisation capability of the
genetic algorithm to implement feature weighting.

The WDN method optimises the normalisation intervals (range) of the input
variables and allocates weights to each of the variables from a dataset. The method
consists of the following steps.

1. The training data are preprocessed first by a general normalisation method.
There are several ways to achieve this: (a) normalising a given dataset so
that they fall in a certain interval, e.g. [0, 1], [0, 255] or [−1, 1] etc; (b)
normalising the dataset so that the inputs and targets will have means of zero

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

Rmin
Rmax

M-of-N

nMF

gen

Fig. 6.9 Evolution of the parameters: number of membership functions nMF; m-of-n; Rmax and Rmin of an
ECF evolving model over 40 generations of a GA optimisation procedure.

192 Evolving Connectionist Systems

Fig. 6.10 GA for ECF parameter and feature evaluation on the case study example of lymphoma cancer outcome
prediction (Ship et al., 2002) based on a clinical variable (#1, IPI, International Prognostic Index) and 11 gene
expression variables (#2–12) across 56 samples. Twenty generations are run over populations of 20 individual
ECF models, each trained five times (five-cross validation) on 70% of the data selected for training and 30%
for testing. The average accuracy of all five validations is used as a fitness function. The accuracy of the best
model evolves from 76% (the first generation) to 90.622% due to optimization of the ECF parameters (Rmin,
Rmax, m-of-n, number of training iterations). The best model uses 9 input variables instead of 12 (variables
5, 8, and 12 are not used).

and standard deviations of 1; (c) normalising the dataset so that the deviation
of each variable from its mean is normalised by its standard deviation. In the
WDN, we normalise the dataset in the interval [0, 1].

2. The weights of the input variables [x1, x2� � � � � xn] represented respectively by
[w1, w2� � � � �wn] with initial values of [1,1, …, 1], form a chromosome for a
consecutive GA application. The weight wi of the variable xi defines its new
normalisation interval [0,wi].

3. GA is run on a population of connectionist learning modules for different
chromosome values over several generations. As a fitness function, the root
mean square error (RMSE) of a trained connectionist module on the training
or validation data is used, or alternatively the number of the created rule nodes
can be used as a fitness function that needs to be minimised.

4. The connectionist model with the least error is selected as the best one, and
its chromosome, the vector of weights [w1, w2� � � � �wn] defines the optimum
normalisation range for the input variables.

5. Variables with small weights are removed from the feature set and the steps
from above are repeated again to find the optimum and the minimum set of
variables for a particular problem and a particular connectionist model.

Population-Generation-Based Methods 193

The above WDN method is illustrated in the next section on two case study ECOS
and on two typical problems, namely EFuNN for a time-series prediction, and
ECMC for classification.

Example 1: Off-Line WDN of EFuNN for Prediction

Here an EFuNN model is developed for a time-series prediction problem. Improved
learning with the WDN method is demonstrated on the Mackey–Glass (MG) time-
series prediction task. In the experiments, 1000 data points, from t = 118 to 1117,
are extracted for predicting the six-steps-ahead output value. The first half of the
dataset are taken as the training data and the rest as the testing data.

The following parameters are set in the experiments for the EFuNN model:
Rmax = 0�15; Emax = 0�15 and nMF = 3. The following GA parameter values are used:
for each input variable, the values from 0.16 to 1 are mapped onto a four-bit
string; the number of individuals in a population is 12; mutation rate is 0.001;
termination criterion (the maximum epochs of GA operation) is 100 generations;
the RMSE on the training data is used as a fitness function. The optimised weight
values, the number of the rule nodes created by EFuNN with such weights, the
training and testing RMSE, and the control experiments are shown in Table 6.3.

With the use of the WDN method, better prediction results are obtained for
a significantly smaller number of rule nodes (clusters) evolved in the EFuNN
models. This is because of the better clustering achieved when different variables
are weighted according to their relevance.

Example 2: Off-Line WDN Optimisation and Feature Extraction for ECMC

In this section, an evolving clustering method for classification ECMC (see
Chapter 2) with WDN is applied to the Iris data for both classification and feature
weighting/selection. All experiments in this section are repeated 50 times with the
same parameters and the results are averaged. Fifty percent of the whole dataset
is randomly selected as the training data and the rest as the testing data. The
following parameters are set in the experiments for the ECMC model: Rmin = 0�02;
each of the weights for the four normalised input variables is a value from 0.1 to
1 and is mapped into a six-bit binary string.

The following GA parameters are used: number of individuals in a population
12; mutation rate pm = 0�005; termination criterion (the maximum epochs of

Table 6.3 Comparison between EFuNN without weighted data normalisation (WDN)
and EFuNN with WDN.

Normalisation
weights

Number on
rule nodes

Training
RMSE

Testing
RMSE

EFuNN without WDN 1, 1, 1, 1 87 0.053 0.035
EFuNN with WDN 0.4, 0.8, 0.28, 0.28 77 0.05 0.031

194 Evolving Connectionist Systems

Table 6.4 Comparison between evolving clustering method for classification ECMC (see
Chapter 2) without weighted data normalisation (WDN) and ECMC with WDN.

Normalised
feature weights

Number of rule
nodes

Number of test
errors

4 Inputs without WN 1, 1, 1, 1 9.8 3.8
4 Inputs with WN 0.25, 0.44, 0.73, 1 7.8 3.1
3 Inputs without WN 1, 1, 1 8.8 3.7
3 Inputs with WN 0.50, 0.92, 1 8.1 2.9
2 Inputs without WN 1,1 7.7 3.2
2 Inputs with WN 1, 0.97 7.4 3.1

GA operation) 50; the fitness function is determined by the number of created
rule nodes.

The final weight values, the number of rule nodes created by ECMC, and the
number of classification errors on the testing data, as well as the control experiment
are shown in the first two rows of Table 6.4, respectively. Results show that the
weight of the first variable is much smaller than the weights of the other variables.
Now using the weights as a guide to prune away the least relevant input variables,
the same experiment is repeated without the first input variable. As shown in the
subsequent rows of Table 6.4, this pruning operation slightly reduces test errors.
However, if another variable is removed (i.e. the total number of input variables
is two) test error increases. So we conclude that for this particular application the
optimum number of input variables is three.

6.5 EC for Feature and Model Parameter Optimisation
of Transductive Personalised (Nearest Neighbour)
Models

6.5.1 General Notes

In transductive reasoning, for every new input vector xi that needs to be processed
for a prognostic/classification task, the Ni nearest neighbors, which form a data
subset Di, are derived from an existing dataset D and a new model Mi is dynam-
ically created from these samples to approximate the function in the locality of
point xi only. The system is then used to calculate the output value yi for this
input vector xi (Vapnik (1998); also see Chapter 1).

The transductive approach has been implemented in medical decision support
systems and time-series prediction problems, where individual models are created
for each input data vector (i.e. specific time period or specific patient). The
approach gives good accuracy for individual models and has promising applica-
tions especially in medical decision support systems. This transductive approach
has also been applied using support vector machines as the base model in the area
of bioinformatics and the results indicate that transductive inference performs
better than inductive inference models mainly because it exploits the structural

Population-Generation-Based Methods 195

information of unlabelled data. However, there are a few open questions that need
to be addressed when implementing transductive modelling (Mohan and Kasabov,
2005).

6.5.2 How Many Nearest Neighbours Should Be Selected?

A standard approach adopted to determine the number of nearest neighbours
is to consider a range starting with 1, 2, 5, 10, 20, and so on and finally
select the best value based on the classifier’s performance. In the presence of
unbalanced data distribution among classes in the problem space recommended
value of nearest neighbours is to range from 1 to a maximum of number of
samples in the smaller class or the square root of the number of samples in the
problem space. A similar recommendation is made by Duda and Hart (1973)
based on concepts of probability density estimation of the problem space. They
suggest that the number of nearest neighbours to consider depends on two
important factors: distribution of sample proportions in the problem space and the
relationship between the samples in the problem space measured using covariance
matrices.

The problem of identifying the optimal number of neighbours that improves the
classification accuracy in transductive modeling remains an open question that is
addressed here with the use of a GA.

6.5.3 What Distance Measure to Use and in What Problem Space?

There exist different types of distance measures that can be considered to measure
the distance of two vectors in a different part of the problem/feature space such as
Euclidean, Mahalanobis, Hamming, cosine, correlation, and Manhattan distance
among others (see Chapter 2). It has been proved mathematically that using an
appropriate distance metric can help reduce classification error when selecting
neighbours without increasing number of sample vectors. Hence it is important
to recognise which distance measure will best suit the data in hand.

Some authors suggest that in the case where the dataset consists of numerical
data, the Euclidean distance measure should be used when the attributes
are independent and commensurate with each other. However, in the case
where the numerical data are interrelated, then Mahalanobis distance should be
considered as this distance measure takes interdependence between the data into
consideration.

If the data consist of categorical information, Hamming distance can appropri-
ately measure the difference between categorical data. Also, in the case where the
dataset consists of a combination of numerical and categorical values, for example,
a medical dataset that includes the numerical data such as gene expression
values and categorical data such as clinical attributes, then the distance measure
considered could be the weighted sum of Mahalanobis or Euclidean for numerical
data and Hamming distance for nominal data.

196 Evolving Connectionist Systems

Keeping these suggestions in perspective, it is important to provide a wide
range of options to select the distance measure based on the type of dataset in a
particular part of the problem space for a particular set of features.

6.5.4 How is the Input Vector Assigned an Output Value?

There are different ways of determining the contribution of the nearest neigh-
bours to the output class of the input vector, already discussed in Chapter 1,
such as:

• The K-nearest neighbours (K-NN)
• WKNN
• WWKNN
• Other methods, such as MLR, ECOS, etc.

6.5.5 What Features are Important for a Specific Input Vector?

We discussed the issue of feature selection in Chapter 1, but here we raise the issue
of which feature set Fi is most appropriate to use for each individual vector xi

6.5.6 A GA Optimization of Transductive Personalised Models

The proposed algorithm aims to answer all these questions by applying a trans-
ductive modeling approach that uses GA to define the optimal: (a) distance
measure, (b) number of nearest neighbours, and (c) feature subset for every new
input vector (Mohan and Kasabov, 2005).

The number of neighbours to be optimized lies in the minimum range of the
number of features selected in the algorithm and a maximum of the number of
samples available in the problem space.

As an illustration the multiple linear regression method (MLR) is used as the
base model for applying the transductive approach. The model is represented by
a linear equation which links the features/variables in the problem space to the
output of the classification task and is represented as follows:

r = w0+w1X1+ � � �+wnXn�

where r represents the output, and wi represents the weights for the
features/variables of the problem space which are calculated using the least
square method. The descriptors Xi are used to represent the structural infor-
mation of the data samples, that is, the features/variables, and n represents the
number of these features/variables. The reason for selecting the MLR model is
the simplicity of this model that will make the comparative analysis of the trans-
ductive approach using GA with the inductive approach easier to understand and
interpret.

Population-Generation-Based Methods 197

The main objective of this algorithm is to develop an individualized model for
every data vector in a semi-supervised manner by exploiting the data vector’s
structural information, to identify its nearest neighbours in the problem space
and finally to test the model using the neighbouring data vectors to check the
effectiveness of the model created. The GA is used to locate an effective set of
features that represent most of the data’s significant structural information along
with the optimal number of neighbours to consider and the optimal distance
measure to identify the neighbours. The complete algorithm is described in two
parts, the transductive setting and the GA.

1. We normalize the dataset linearly with values between 0 and 1 to ensure
a standardization of all values especially when variables are represented in
different units. This normalization procedure is based on the assumption that
all variables/features have the same importance for output of the system for the
whole problem space.

2. For every test sample Ti, perform the following steps: select the closest neigh-
bouring samples, create a model, and evaluate its accuracy
For every test sample Ti we select through a GA optimisation: a set of features
to be considered, the number of nearest neighbours, and the distance measure
to locate the neighbours.

The accuracy of the selected set of parameters for the Ti model is calculated
by creating a model with these parameters for each of the neighbours of the
test sample Ti and calculating the accuracy of each of these models. The cross-
validation is run in a leave-one-out manner for all neighbours of Ti. If, for
the identified set of parameters, the neighbours of Ti give a high classification
accuracy rate, then we assume that the same set of parameters will also work
for the sample Ti. This criterion is used as a fitness evaluation criterion for the
GA optimisation procedure.

3. Perform the set of operations in step 2 in a leave-one-out manner for all the
samples in the dataset and calculate the overall classification accuracy for this
transductive approach (see Chapter 1).

Experiments

We conducted experiments on various UC Irvine datasets with their charac-
teristics represented in Table 6.5a. The tests were carried out on all the data
using the leave-one-out validation technique. The datasets were selected as the
ones without any missing values except for the breast cancer dataset that had
four missing values. At the preprocessing stage, the four samples with missing
values were deleted and the size of the breast cancer dataset reduced from 198
to 194. As the next step of preprocessing, all the datasets were normalised using
linear normalisation resulting in values in the range of 0 and 1 to provide
standardisation.

Table 6.5b presents cross-validation results for comparison between the
inductive modelling approach and the transductive modelling approach without
and with GA parameter optimisation for MLR models.

198 Evolving Connectionist Systems

Table 6.5 (a) Different machine learning benchmark datasets; (b) classification results
using: inductive multiple linear regression (MLR) model for classification; a transductive
MLR without and with GA parameter optimisation of the following parameters: number
of neighbouring samples K, input variables, distance measure.
(a)

Dataset No. of classes No. of features No. of data points

Thyroid 3 5 215
Sonar 2 60 208
Breast Cancer 2 30 194
Liver 2 6 345
Glass 7 10 214

(b)

Data Classification
accuracy of an
inductive .MLR

Transductive MLR
with fixed
parameters
selected manually
as the best from
multiple runs

Transductive MLR
with GA optimised
parameters

Thyroid 86.51 94.88 94.88
Sonar 75.48 78.81 81.25
Breast Cancer 72.16 67.01 73.711
Liver 69.57 73.62 78
Glass 60.75 68.69 74

The results show that the transductive modelling approach significantly outper-
forms the inductive modelling and parameter optimisation also improves the
accuracy of the individual models at average.

6.6 Particle Swarm Intelligence

In a GA optimisation procedure, a solution is found based on the best individual
represented as a chromosome, where there is no communication between the
individuals.

Particle swarm optimization (PSO), introduced by Kennedy and Eberhard (1995)
is motivated by social behaviour of organisms such as bird flocking, fish schooling,
and swarm theory. In a PSO system, each particle is a candidate solution to
the problem at hand. The particles in a swarm fly in multidimensional search
space, to find an optimal or suboptimal solution by competition as well as by
cooperation among them. The system initially starts with a population of random
solutions. Each potential solution, called a particle, is given a random position and
velocity.

The particles have memory and each particle keeps track of its previous best
position and the corresponding fitness. The previous best position is called the

Population-Generation-Based Methods 199

Fig. 6.11 A graphical representation of a particle swarm optimisation process (PSO) in a 2D space.

pbest. Thus, pbest is related only to a particular particle. The best value of all
particles’ pbest in the swarm is called the gbest. The basic concept of PSO lies in
accelerating each particle towards its pbest and the gbest locations at each time
step. This is illustrated in Fig. 6.11 for a two-dimensional space.

PSO have been developed for continuous, discrete, and binary problems. The
representation of the individuals varies for the different problems. Binary particle
swarm optimisation (BPSO) uses a vector of binary digit representation for the
positions of the particles. The particle’s velocity and position updates in BPSO are
performed by the following equations.

vnew = w∗vold + c∗
1 rand��∗�pbest −pold�+ c∗

2 rand��∗�gbest −pold� (6.3)

pnew =
{

0 if r ≥ s�vnew�

1 if r < s�vnew�
(6.4)

where

s�vnew� = 1

1+ exp�−vnew�
and r ∼ U�0� 1� (6.5)

The velocities are still in the continuous space. In BPSO, the velocities are not
considered as velocities in the standard PSO but are used to define proba-
bilities that a bit flip will occur. The inertia parameter w is used to control
the influence of the previous velocity on the new velocity. The term with c1

corresponds to the “cognitive” acceleration component and helps in accelerating
the particle towards the pbest position. The term with c2 corresponds to the
“social” acceleration component which helps in accelerating the particle towards
the gbest position.

200 Evolving Connectionist Systems

A simple version of a PSO procedure is given in Box 6.2.

Box 6.2. A pseudo-code of a PSO algorithm

begin

t ← 0 (time variable)
1) Initialize a population with random positions and velocities
2) Evaluate the fitness
3) Select the pbest and gbest

while (termination condition is not met) do

begin
t ← t +1
4) Compute velocity and position updates
5) Determine the new fitness
6) Update the pbest and gbest if required
end

end

6.7 Artificial Life Systems (ALife)

The main characteristics of life are also the main characteristics of a modelling
paradigm called artificial life (ALife), namely:

1. Self-organisation and adaptation
2. Reproducibility
3. Population/generation-based
4. Evolvability

A popular example of an ALife system is the so-called Conways’ Game of Life
(Adami, 1998): Each cell in a 2D grid can be in one of the two states: either on
(alive) or off’ (dead, unborn). Each cell has eight neighbours, adjacent across the
sides and corners of the square.

Whether cells stay alive, die, or generate new cells depends upon how many
of their eight possible neighbours are alive and is based on the following
transition rule:

Rule S23/B3, a live cell with two live neighbours, or any cell with three neigb-
hours, is alive at the next time step (see Fig. 6.12).

• Example 1: If a cell is off and has three living neighbours (out of eight), it will
become alive in the next generation.

• Example 2: If a cell is on and has two or three living neighbours, it survives;
otherwise, it dies in the next generation.

Population-Generation-Based Methods 201

(a) (b)

Fig. 6.12 Two consecutive states of the Game of Life according to rule S23/B3 (one of many possible rules),
meaning that every cell survives if it is alive and is surrounded by two or three living cells, and a cell is born
if there are three living cells in the neighbourhood, otherwise a cell dies (as a result of an either overcrowded
neighbourhood of living cells, or of lack of sufficient living cells, ‘loneliness’).

• Example 3: A cell with less than two neighbours will die of loneliness and a cell
with more then three neighbours will die of overcrowding.

In this interpretation, the cells (the individuals) never change the above rules and
behave in this manner forever (until there is no individual left in the space). A
more intelligent behaviour would be if the individuals were to change their rules of
behaviour based on additional information they were able to collect. For example,
if the whole population is likely to become extinct, then the individuals would
create more offspring, and if the space became too crowded, the individual cells
would not reproduce every time they are ‘forced’ to reproduce by the current
rule. In this case we are talking about emerging intelligence of the artificial life
ensemble of individuals (see Chapter 1). Each individual in the Game of Life can
be implemented as an ECOS that has connections with its neighbours and has
three initial exact (or fuzzy) rules implemented, but at a later stage new rules can
be learned.

6.8 Exercise

Choose a classification problem and a dataset.
Create an evolving classification (ECF) or other classfication model for the
problem and evaluate its accuracy.
Apply a GA for 20 generations, 20 individuals in a population, for parameter
and feature optimisation of ECF and evaluate the accuracy.
Apply an ES for 20 generations, 20 individuals in a population, for parameter
and feature optimisation of ECF and evaluate the accuracy.
Apply ECF with WDN (weighted data normalisation) for weighting the input
variables in an optimised model.
Apply transductive modelling with MLR or other methods, with a GA optimi-
sation of the number of the nearest samples, the input features and the distance
measure.
Apply particle swarm optimisation (PSO) to the problem.
Compare the results from the above experiments.
Question: In general, what EC method (GA, ES, WDN, transductive, PSO) would
be most suitable to the problem in hand and why?

202 Evolving Connectionist Systems

What knowledge can be learned from an optimised model when compared to
an unoptimised one?

6.9 Summary and Open Questions

This chapter presents several approaches for using evolutionary computation (EC)
for the optimisation of ECOS. There are many issues that need to be addressed
for further research in this area. Some of the issues are:

1. Online optimisation of the fitness function of an EC.
2. Using individual fitness functions for each ECOS.
3. EC helps choose the parameter values of ECOS, but how do we choose the

optimal parameters for the EC method at the same time?
4. Interactions between individuals and populations that have different genetic

makeups.

6.10 Further Reading

• Generic Material on Evolutionary Computation (Goldberg, 1989; Michaliewicz,
1992)

• Genetic Programming (Koza, 1992)
• Evolutive Fuzzy Neural Networks (Machado et al., 1992)
• Using EC Techniques for the Optimisation of Neural Networks (Fogel, 1990;

Schiffman et al., 1993; Yao, 1993)
• Using GA for the Optimisation and Training of Fuzzy Neural Networks (Watts

and Kasabov, 1998)
• The Evolution of Connectivity: Pruning Neural Networks Using Genetic

Algorithms (Whitley and Bogart, 1990)
• Neuronal Darwinism (Edelman, 1992)
• GA for the Optimisation of Fuzzy Rules (Furuhashi et al., 1994)
• Using EC for Artificial Life (Adami, 1998)
• Online GA and ES Optimisation of ECOS (Kasabov 2003; Chan et al. 2004)
• Parameter Optimisation of EFuNN (Watts and Kasabov, 2001, 2002; Minku and

Ludemir, 2005)
• Swarm Intelligence (Kennedy and Eberhard, 1995)

7. Evolving Integrated
Multimodel Systems

Chapters 2 to 6 presented different methods for creating single evolving
connectionist models. This chapter presents a framework and several methods
for building evolving connectionist machines that integrate in an adaptive way
several evolving connectionist models to solve a given task, allowing for using
different models (e.g. regression formulas, ANN), and for adding new data and
new variables. The chapter covers the following topics.

• A framework for evolving multimodel systems
• Adaptive, incremental data and model integration
• Integrating kernel functions and regression formulas in knowledge-based ANN
• Ensemble learning methods for ECOS
• Integrating ECOS with evolving ontologies
• Summary and open problems
• Further reading

7.1 Evolving Multimodel Systems

7.1.1 A General Framework

Complex problems usually require a more complex intelligent system for their
solution, consisting of several models. Some of these models can be evolving
models. A block diagram of a framework for evolving connectionist machines,
consisting of several evolving models (EM) is given in Fig. 7.1 (from Kasabov
(1998a)).

The framework facilitates multilevel multimodular ensembles where many EM or
ECOS are connected with inter- and intraconnections. The evolving connectionist
machine does not have a ‘clear’ multilayer structure. It has a modular ‘open’
structure. The main parts of the framework are described below.

1. Input presentation part: This filters the input information, performs feature
extraction and forms the input vectors. The number of inputs (features) can
vary from example to example.

203

204 Evolving Connectionist Systems

Knowledge
-based

(rule-based)
Part

A
ct

io
n

M
od

ul
es

•
•

•

Action
Part

Decision
PartFeature

Selection
Part

Representation
(memory)
Part

Inputs

New
Inputs

Environment
(Critique)

Higher
Level
Decis.
Part

Adaptation

EM

EM

EM

Results

Fig. 7.1 A block diagram of a framework for evolving multimodel systems (Kasabov, 2001).

2. Representation and memory part, where information (patterns) are stored: This
is a multimodular evolving structure of evolving connectionist modules and
systems organised in spatially distributed groups; for example, one group can
represent the phonemes in a spoken language (e.g. one ECOS representing a
phoneme class in a speech recognition system).

3. Higher-level decision part: This consists of several modules, each taking
decisions on a particular problem (e.g. word recognition or face identification).
The modules receive feedback from the environment and make decisions about
the functioning and adaptation of the whole evolving machine.

4. Action part: The action modules take output values from the decision modules
and pass information to the environment.

5. Knowledge-based part: This part extracts compressed abstract information from
the representation modules and from the decision modules in different forms
of rules, abstract associations, etc.

Initially, an evolving machine is a simple multimodular structure, each of the
modules being a mesh of nodes (neurons) with very little connection between
them, predefined through prior knowledge or ‘genetic’ information. An initial set

Evolving Integrated Multimodel Systems 205

of rules can be inserted in this structure. Gradually, through self-organisation,
the system becomes more and more ‘wired’. New modules are created as the
system operates. A network module stores patterns (exemplars) from the entered
examples. A node in a module is created and designated to represent an individual
example if it is significantly different from the previously used examples (with a
level of differentiation set through dynamically changing parameters).

The functioning of the evolving multimodel machines is based on the following
general principles.

1. The initial structure is defined only in terms of an initial set of features, a
set of initial values for the ECOS parameters (‘genes’) and a maximum set of
neurons, but no connections exist prior to learning (or connections exist but
they have random values close to zero).

2. Input patterns are presented one by one or in chunks, not necessarily having
the same input feature sets. After each input example is presented, the ECOS
either associates this example with an already existing module and a node in
this module, or creates a new module and/or creates a new node to accom-
modate this example. An ECOS module denoted in Fig. 7.1 as an evolving
module (EM), or a neuron, is created when needed at any time during the
functioning of the whole system.

3. Evolving modules are created as follows. An input vector x is passed through
the representation module to one or more evolving modules. Nodes become
activated based on the similarity between the input vector and their input
connection weights. If there is no EM activated above a certain threshold a
new module is created. If there is a certain activation achieved in a module
but no sufficient activation of a node inside it, a new node will be created.

4. Evolving a system can be achieved in different modes, e.g. supervised,
reinforcement, or unsupervised (see Chapters 2 through 5). In a supervised
learning mode the final decision on which class (e.g. phoneme) the current
vector x belongs to is made in the higher-level decision module that may
activate an adaptation process.

5. The feedback from the higher-level decision module goes back to the feature
selection and filtering part (see Chapter 1).

6. Each EM or ECOS has both aggregation and pruning procedures defined.
Aggregation allows for modules and neurons that represent close information
instances in the problem space to merge. Pruning allows for removing modules
and neurons and their corresponding connections that are not actively involved
in the functioning of the ECOS (thus making space for new input patterns).
Pruning is based on local information kept in the neurons. Each neuron in
ECOS keeps track of its ‘age’, its average activation over the whole lifespan,
the global error it contributes to, and the density of the surrounding area of
neurons (see, for example, EFuNN, Chapter 3).

7. The modules and neurons may be spatially organised and each neuron has
relative spatial dimensions with regard to the rest of the neurons based on
their reaction to the input patterns. If a new node is to be created when an
input vector x is presented, then this node will be allocated closest to the
neuron that had the highest activation to the input vector x, even though
insufficiently high to accommodate this input vector.

206 Evolving Connectionist Systems

8. In addition to the modes of learning from (4), there are two other general
modes of learning (see Chapter 1):
(a) Active learning mode: Learning is performed when a stimulus (input

pattern) is presented and kept active.
(b) Sleep learning mode: Learning is performed when there is no input pattern

presented at the input of the machine. In this case the process of further
elaboration of the connections in an ECOS is done in a passive learning
phase, when existing connections, that store previous input patterns, are
used as eco-training examples. The connection weights that represent
stored input patterns are now used as exemplar input patterns for training
other modules in ECOS.

9. ECOS provide explanation information (rules) extracted from the structure of
the NN modules.

10. The ECOS framework can be applied to different types of ANN (different types
of neurons, activation functions, etc.) and to different learning algorithms.

Generally speaking, the ECOS machine from Fig. 7.1 can theoretically model the
five levels of evolving processes as shown in Fig.I.1. We can view the functioning
of an ECOS machine as consisting of the following functional levels.

1. Gene, parameter, level: Each neuron in the system has a set of parameters –
genes – that are subject to adaptation through both learning and evolution.

2. Neuronal level: Each neuron in every ECOS has its information-processing
functions, such as the activation function or the maximum radius of its receptive
field.

3. Ensembles of neurons: These are the evolving neural network modules (EM)
each of them comprising a single ECOS, e.g. an EFuNN.

4. The whole ECOS machine: This has a multimodular hierarchical structure with
global functionality.

5. Populations of ECOS machines and their development over generations (see
Chapter 6).

The following algorithm describes a scenario of the functioning of this system.

Loop 0: {Create a population of ECOS machines with randomly chosen parameter
values – chromosomes (an optional higher-level loop)

Loop 1: {Apply evolutionary computation after every p data examples over the
whole population of ECOS machines.

Loop 2: {Apply adaptive lifelong learning (evolving) methods to an ECOS (e.g.
ECM, EFuNN, DENFIS) from the ECOS machine to learn from p examples.

Loop 3: {For each created neuron in an ECOS adapt (optimise) its parameter
values (genes) during the learning process either after each example, or
after a set of p examples is presented. Mutation or other operations over
the set of parameters can be applied. During this process a gene interaction
network (parameter dependency network) can be created, allowing for
observation of how genes (parameters) interact with each other.
} end of loop 3 } end of loop 2 } end of loop 1 } end of loop 0 (optional)

The main challenge here is to be able to model both the evolving processes at each
level of modelling and the interaction between these levels.

Evolving Integrated Multimodel Systems 207

7.1.2 An Integrated Framework of Global, Local,
and Personalised Models

Global models capture trends in data that are valid for the whole problem space,
and local models capture local patterns, valid for clusters of data (see Chapter 1).
Both models contain useful information and knowledge. Local models are also
adaptive to new data as new clusters and new functions, that capture patterns
of data in these clusters, can be incrementally created. Usually, both global and
local modelling approaches assume a fixed set of variables and if new variables,
along with new data, are introduced with time, the models are very difficult to
modify in order to accommodate these new variables. This can be done in the
personalised models, as they are created on the fly and can accommodate any new
variables, provided that there are data for them. All three approaches are useful for
complex modelling tasks and all of them provide complementary information and
knowledge, learned from the data. Integrating all of them in a single multimodel
system would be an useful approach and a challenging task.

A graphical representation of an integrated multimodel system is presented in
Fig. 7.2. For every single input vector, the outputs of the tree models are weighted.
The weights can be adjusted and optimised for every new input vector in a similar
way as the parameters of a personalised model (Kasabov, 2007b).

yi = wi�g yi�xi�
�global� +wi�l yi�xi�

�local� +wi�p yi�xi�
�personalised� (7.1)

7.1.3 Spatial and Temporal Complexity of a Multimodel ECOS

Spatial complexity of a system defines the system architecture requirements in
terms of nodes, connections, etc. The spatial complexity of an ECOS could be
evaluated as follows.

Global
Model

Local
Model

Personalised
Model Mi

New input
vector xi

Data base

Weighted
Output yi

Fig. 7.2 A graphical representation of an integrated global, local, and personalised multimodel system. For
every single input vector, the outputs of the tree models are weighted (Kasabov, 2007b).

208 Evolving Connectionist Systems

• Number of features; number of NN modules; total number of neurons
• Total number of connections
• Function of growth (linear, exponential)
• Level of pruning and aggregation

As shown graphically in Fig. 7.3, for a hypothetical example, an ECOS creates
modules and connects nodes all the time, but it happens more often at the
beginning of the evolving process (until time t1). After that, the subsequent input
patterns are accommodated, but this does not cause the creation of many new
connections until time t2, when a new situation in the modelled process arises (e.g.
a user speaks a different accent to the machine, or there is a new class of genes, or
the stock market rises/crashes unexpectedly). Some mechanisms prevent infinite
growth of the ECOS structure. Such mechanisms are pruning and aggregation. At
this moment the ECOS ‘shrinks’ and its complexity is reduced (time t3 in the
figure).

Time complexity is measured in the required time for the system to react to an
input datum.

7.1.4 An Agent-Based Implementation of Multimodel
Evolving Systems

An agent-based implementation of the framework from Fig. 7.1 is shown in Fig. 7.4.
The main idea of this framework is that agents, which implement some evolving
models, are created online whenever they are needed in time. Some agents collect
data, some learn from these data in an online lifelong mode, and some extract and
refine knowledge. The models are dynamically created (on the fly). Figure 7.4 shows

Evolving Process

Complexity (e.g. neurons
and connections)

Aggregation (abstraction)

time

timet0 t1 t2 t3

Evolving Model/System

Fig. 7.3 A hypothetical example of a complexity measure in an evolving connectionist system.

Evolving Integrated Multimodel Systems 209

Data/Environment

Adaptive
Learning

Repository of modules Agent 1

Agent 2

Module
Generation

Intelligent Design Interface

Solution

Rule
Extraction

User task
Specification Results

Expert
Knowledge

Base

Rule
Insertion

Data Transformation•
Neural Networks•
Fuzzy Logic•
Genetic Algorithms•
EFuNNs•

Text•
• Images
• Time series data

Fig. 7.4 Multiagent implementation of multimodel ECOS.

the general architecture of the framework. The user specifies the initial problem
parameters and the task to be solved. Then intelligent agents (designers) create
dynamic units – modules – that initially may contain no structured knowledge,
but rules on how to create the structure and evolve the functionality of the module.

The modules combine expert rules with data from the environment. The modules
are continuously trained with these data. Rules may be extracted from trained
modules. This is facilitated by several evolving connectionist models, such as the
evolving fuzzy neural network EFuNN (Chapter 3). Rules can be extracted for the
purpose of later analysis or for the creation of new modules. Modules can be
deleted if they are no longer needed for the functioning of the whole system.

7.2 ECOS for Adaptive Incremental Data
and Model Integration

7.2.1 Adaptive Model and Data Integration: Problem Definition

Despite the advances in mathematical and information sciences, there is a lack of
efficient methods to extend an existing model M to accommodate new (reliable)
dataset D for the same problem, if M does not perform well on D. Examples of
existing models that need to be further modified and extended to new data are
numerous: differential equation models of cells and neurons, a regression formula
to predict the outcome of cancer, an analytical formula to evaluate renal functions,
a logistic regression formula for evaluating the risk of cardiac events, a set of rules

210 Evolving Connectionist Systems

for the prediction of the outcome of trauma, gene expression classification and
prognostic models, models of gene regulatory networks, and many more.

There are several approaches to solving the problem of integrating an existing
model M and new data D but they all have limited applicability. If a model M was
derived from data DM , DM and D can be integrated to form a dataset Dall and a
new model Mnew could be derived from Dall in the same way M was derived from
DM . This approach has a limited applicability if past data DM are not available or
the new data contain new variables. Usually, the existing models are global, for
example a regression formula that ‘covers’ the whole problem space. Creating a
new global model after every new set of data is made available is not useful for
the understanding of the dynamics of the problem as the new global model may
appear very differently from the old one even if the new data are different from
the old one only in a tiny part of the problem space.

Another approach is to create a new model MD based only on the dataset D, and
then for any new input data to combine the outputs from the two models M and
MD (Fig. 7.5a). This approach, called ‘mixture of experts’, treats each model M and
MD as a local expert that performs well in a specific area of the problem space.
Each model’s contribution to the final output vector is weighted based on their
‘strengths’. Some methods for weighting the outputs from two or more models
have been developed and used in practice. Although this approach is useful for
some applications, the creation, the weight optimization, and the validation of
several models used to produce a single output in areas where new input data are
generated continuously, could be an extremely difficult task. In Kasabov (2007b)
an alternative approach is proposed that is a generic solution to the problem as
explained below.

7.2.2 Integrating New Data and Existing Models Through Evolving
Connectionist Systems

In the method introduced here, we assume that an existing model M performs well
in part of the problem space, but there is also a new dataset D that does not fit into
the model. The existing model M is first used to generate a dataset D0 of input–
output data samples through generating input vectors (the input variables take
values in their respective range of the problem space where the model performs
well) and calculating their corresponding output values using M (Fig. 7.5b). The
dataset D0 is then used to evolve an initial connectionist model M0 with the use of
an evolving connectionist system (ECOS) and to extract rules from it where each
rule represents a local model (a prototype).

The model M0 can be made equivalent to the model M to any degree of accuracy
through tuning the parameters of ECOS. The initial ECOS model M0 is then further
trained on the new data D thus tuning the initial rules from M0 and evolving new
rules applicable to the dataset D. The trained ECOS constitutes an integrated new
model Mnew that consists of local adaptable rules. To compare the generalisation
ability of M and Mnew, the datasets D0 and D are split randomly into training and
testing sets: D0tr � D0tst � Dtr � Dtst ,. The training sets are used to evolve the new model
Mnew and the test sets are used to validate Mnew and compare it with the existing
model M. The new model Mnew can be incrementally trained on future incoming

Evolving Integrated Multimodel Systems 211

(a)

Model M

Data D

Weighted
output

Model MD

(b)

Model M

Data D

Model M0
(e.g. ECOS)

Model Mnew
(ECOS)

Model Mnew
adapted

Further incoming data …

Data D0

(c)

Model M

Data D

Model Mnew,i
(ECOS) for
the new input
vector xi

Further incoming data.. xi

Data D0,I generated in the
vicinity of the input vector xi

Data DI selected in the
vicinity of the input vector xi

Fig. 7.5 (a) The ‘mixture of experts’ approach for model M and data D integration combines outputs from
different models M and MD (derived from D); (b) the proposed inductive, local learning method generates
data D0 from an existing model M , creates an ECOS model M0 from D0, and further evolves M0 on the new
data D thus creating an integrated, adaptive new model Mnew; (c) in a transductive approach, for every new
input vector xi, a new model Mnew� i is created based on generated data from the old model M and selected
data from the new dataset D, all of them being in the vicinity of the new input vector (Kasabov, 2006).

data and the changes can be traced over time. New data may contain new variables
and have missing values as explained later in the book. The method utilizes the
adaptive local training and rule extraction characteristics of ECOS.

In a slightly different scenario (Fig. 7.5c), for any new input vector xi that
needs to be processed by a model Mnew so that its corresponding output value is
calculated, data samples, similar to the new input vector xi are generated from
both dataset D, samples Di, and from the model M, samples D0�i, and used to
evolve a model Mnew�i that is tuned to generalise well on the input vector xi.
This approach can be seen as a partial case of the approach from above and

212 Evolving Connectionist Systems

in the rest of the book we consider the adaptive data and model integration
according to the scheme from Fig. 7.5b.

Example

The method is illustrated with a simple model M that represents a nonlinear
function y of two variables x1 and x2 and a new dataset D (see Fig. 7.6a). The
model M does not perform well on the data D. The model is used to generate a
dataset D0 in a subspace of the problem space where it performs well. The new
dataset D is in another subspace of the problem space. Data D0tr extracted from
D0 is first used to evolve a DENFIS model M0 and seven rules are extracted, so
the model M is transformed into an equivalent set of seven local models. The
model M0 is further evolved on Dtr into a new model Mnew, consisting of nine
rules allocated to nine clusters, the first seven representing data D0tr and the last
two, data Dtr (Table 7.1a). Although on the test data D0tst both models performed
equally well, Mnew generalises better on Dtst (Fig. 7.6c).

An experiment was conducted with an EFuNN (error threshold E = 0�15, and
maximum radius Rmax = 0�25). The derived nine local models (rules) that represent
Mnew are shown for comparison in Table 7.1b (the first six rules are equivalent to
the model M and data D0tr , and the last three to cover data Dtr).

The models Mnew derived from DENFIS and EFuNN are functionally equivalent,
but they integrate M and D in a different way. Building alternative models of the
same problem could help to understand the problem better and to choose the
most appropriate model for the task. Other types of new adaptive models can
be derived with the use of other ECOS implementations, such as recurrent and
population (evolutionary) based.

7.2.3 Adding New Variables

The method above is applicable to large-scale multidimensional data where new
variables may be added at a later stage. This is possible as partial Euclidean
distance between samples and cluster centres can be measured based on a different
number of variables. If a current sample Sj contains a new variable xnew, having a
value xnewj and the sample falls into an existing cluster Nc based on the common
variables, this cluster centre N is updated so that it takes a coordinate value xnewj

for the new variable xnew, or the new value may be calculated as weighted k-nearest
values derived from k new samples allocated to the same cluster. Dealing with
new variables in a new model Mnew may help distinguish samples that have very
similar input vectors but different output values and therefore are difficult to deal
with in an existing model M.

Example

Samples S1 = �x1 = 0�75� x2 = 0�824� y = 0�2] and S2 = �x1 = 0�75� x2 = 0�823� y = 0�8]
are easily learned in a new ECOS model Mnew when a new variable x3 is added that
has, for example, values of 0.75 and 0.3, respectively, for the samples S1 and S2.

Evolving Integrated Multimodel Systems 213

Partial Euclidean distance can be used not only to deal with missing values, but
also to fill in these values in the input vectors. As every new input vector xi is
mapped into the input cluster (rule node) of the model Mnew based on the partial
Euclidean distance of the existing variable values, the missing value in xi, for an
input variable, can be substituted with the weighted average value for this variable
across all data samples that fall in this cluster.

(a)

(b)

Fig. 7.6 A case study of a model M (formula) and a data set D integration through an inductive, local,
integrative learning in ECOS: (a) a 3D plot of data D0 (data samples denoted o) generated from a model M
(formula) y = 5�1x1 + 0�345x2

1–0�83x1 log10 x2 + 0�45x2 + 0�57 exp�x0�2
2 � in the subspace of the problem

space defined by x1 and x2 both having values between 0 and 0.7, and new data D (samples denoted �)
defined by x1 and x2 having values between 0.7 and 1. (b) The data clusters of D0 (the seven clusters on
the left, each defined as a cluster centre denoted + and a cluster area) and of the data D (the two upper
right clusters) in the 2D input space of x1 and x2 input variables from Fig. 7.2a , are formed in a DENFIS ECOS
trained with the data D0tr (randomly selected 56 data samples from D0� and then further trained with the
data Dtr (randomly selected 25 samples from D�(Continued overleaf).

214 Evolving Connectionist Systems

 (c)

Fig. 7.6 (continued) (c) The test results of the initial model M (the dashed line) versus the new model Mnew
(the dotted line) on the generated from M test data D0tst (the first 42 data samples) and on the new test
data Dtst (the last 30 samples) (the solid line). The new model Mnew performs well on both the old and the
new test data, whereas the old model M fails on the new test data (Kasabov, 2006).

Table 7.1a Local prototype rules extracted from the DENFIS new model Mnew from Fig. 7.6. The last rules
(in bold) are the newly created rules after the DENFIS model, initially trained with the data generated from the
existing formula, was further adapted on the new data, thus creating two new clusters (Kasabov, 2006).

Rule 1: IF x1 is (-0.05, 0.05, 0.14) and x2 is (0.15,0.25,0.35) THEN y = 0�01 + 0�7x1 + 0�12x2
Rule 2: IF x1 is (0.02, 0.11, 0.21) and x2 is (0.45,0.55, 0.65) THEN y = 0�03 + 0�67x1 + 0�09x2
Rule 3: IF x1 is (0.07, 0.17, 0.27) and x2 is (0.08,0.18,0.28) THEN y = 0�01 + 0�71x1 + 0�11x2
Rule 4: IF x1is (0.26, 0.36, 0.46) and x2 is (0.44,0.53,0.63) THEN y = 0�03 + 0�68x1 + 0�07x2
Rule 5: IF x1 is (0.35, 0.45, 0.55) and x2 is (0.08,0.18,0.28) THEN y = 0�02 + 0�73x1 + 0�06x2
Rule 6: IF x1 is (0.52, 0.62, 0.72) and x2 is (0.45,0.55,0.65) THEN y = −0�21 + 0�95x1 + 0�28x2
Rule 7: IF x1is (0.60, 0.69,0.79) and x2 is (0.10,0.20,0.30) THEN y = 0�01 + 0�75x1 + 0�03x2
Rule 8: IF x1is (0.65,0.75,0.85) and x2 is (0.70,0.80,0.90) THEN y = −0�22 + 0�75x1 + 0�51x2
Rule 9: IF x1is (0.86,0.95,1.05) and x2 is (0.71,0.81,0.91) THEN y = 0�03 + 0�59x1 + 0�37x2

Table 7.1b Local prototype rules extracted from an EFuNN new model Mnew on the same problem from
Fig. 7.6. The last rules (in bold) are the newly created rules after the EFuNN model, initially trained with the
data generated from the existing formula, was further adapted on the new data, thus creating three new
clusters (Kasabov, 2006).

Rule 1: IF x1 is (Low 0.8) and x2 is (Low 0.8) THEN y is (Low 0.8), radius R1 = 0�24� N1ex = 6
Rule 2: IF x1 is (Low 0.8) and x2 is (Medium 0.7) THEN y is (Small 0.7), R2 = 0�26� N2ex = 9
Rule 3: IF x1 is (Medium 0.7) and x2 is (Medium 0.6) THEN y is (Medium 0.6), R3 = 0�17� N3ex = 17
Rule 4: IF x1 is (Medium 0.9) and x2 is (Medium 0.7) THEN y is (Medium 0.9), R4 = 0�08� N4ex = 10
Rule 5: IF x1 is (Medium 0.8) and x2 is (Low 0.6) THEN y is (Medium 0.9), R5 = 0�1� N5ex = 11
Rule 6: IF x1 is (Medium 0.5) and x2 is (Medium 0.7) THEN y is (Medium 0.7), R6 = 0�07� N6ex = 5
Rule 7: IF x1 is (High 0.6) and x2 is (High 0.7) THEN y is (High 0.6), R7 = 0�2, N7ex = 12
Rule 8: IF x1 is (High 0.8) and x2 is (Medium 0.6) THEN y is (High 0.6), R8 = 0�1� N8ex = 5
Rule 9: IF x1 is (High 0.8) and x2 is (High 0.8) THEN y is (High3 0.8), R9 = 0�1� N9ex = 6

Evolving Integrated Multimodel Systems 215

7.3 Integrating Kernel Functions and Regression Formulas
in Knowledge-Based ANN

7.3.1 Integrating Regression Formulas and Kernel Functions
in Locally Adaptive Knowledge-Based Neural Networks

Regression functions are probably the most popular type of prognostic and classi-
fication models, especially in medicine. They are derived from data gathered from
the whole problem space through inductive learning, and are consequently used to
calculate the output value for a new input vector regardless of where it is located
in the problem space. For many problems, this can result in different regression
formulas for the same problem through the use of different datasets. As a result,
such formulas have limited accuracy on new data that are significantly different
from those used for the original modelling.

Kernel-based ANNs have radial-based function (RBF) kernels attached to their
nodes that are adjusted through learning from data in terms of their centres and
radii. They are trained as a set of local models that are integrated at the output.
A method for the integration of regression formulas and kernel functions in a
knowledge-based neural network (KBNN) model that results in better accuracy
and more precise local knowledge is proposed in Song et al. 2006). A block diagram
of the proposed KBNN structure is given in Fig. 7.7.

Fig. 7.7 A diagram of a kernel-regression KBNN, combining different kernels Gl with suitable regression
functions F l to approximate data in local clusters C l �l = 1� 2� � � �� M� (from Song et al. (2006)).

216 Evolving Connectionist Systems

The overall functioning of the model can be described by the formula:

y�x� = G1�x�F1�x�+G2�x�F2�x�+ � � �+GM�x�FM�x� (7.1)

where x = �x1� x2� � � �� xP� is the input vector; y is the output vector; Gl are kernel
functions; and Fl are knowledge-based transfer functions, e.g. regression formulas,
1 = 1� 2� � � � � M.

Equation (7.1) can be regarded as a regression function. Using different Gl

and Fl , Eq. (7.1) can represent different kinds of neural networks, and describe
the different functions associated with neurons in their hidden layer(s). Gl are
Gaussian kernel functions and Fl are constants in the case of RBF ANNs. Gl are
sigmoid transfer functions and Fl are constants in the case of a generic three-layer
multilayer perceptron (MLP) ANN. Gl are fuzzy membership functions and Fl

are linear functions in the case of a first-order Takagi–Sugeno–Kang (TSK) fuzzy
inference model; and in the simplest case, Gl represents a single input variable
and Fl are constants in the case of a linear regression function.

In the KBNN from Fig. 7.7, Fl are nonlinear functions that represent the
knowledge in local areas, and Gl are Gaussian kernel functions that control the
contribution of each Fl to the system output. The farther an input vector is from
the centre of the Gaussian function, the less contribution to the output is produced
by the corresponding Fl .

The KBNN model has a cluster-based, multilocal model structure. Every transfer
function is selected from existing knowledge (formulas), and it is trained within a
cluster (local learning), so that it becomes a modified formula that can optimally
represent this area of data. The KBNN aggregates a number of transfer functions
and Gaussian functions to compose a neural network and such a network is then
trained on the whole training dataset (global learning).

7.3.2 The Learning Procedure for the Integrated
Kernel-Regression KBNN

Suppose there are Q functions fh� h = 1� 2� � � � � Q, globally representing existing
knowledge that are selected as functions fl (see Fig. 7.7). The KBNN learning
procedure performs the following steps.

1. Cluster the whole training dataset into M clusters.
2. In each cluster l� l = 1� 2� � � �� M� Q functions fh are modified (local learning)

with a gradient descent method on the subdataset and the best one (with the
minimum root mean square error, RMSE) is chosen as the transfer function Fl
for this cluster.

3. Create a Gaussian kernel function Gl as a distance function: the centre and
radius of the clusters are, respectively, taken as initial values of the centre and
width of Gl.

4. Aggregate all Fl and Gl as per Eq. (7.1) and optimise all parameters in the KBNN
(including parameters of each Fl and Gl� using a gradient descent method on
the whole dataset.

In the KBNN learning algorithm, the following indexes are used.

Evolving Integrated Multimodel Systems 217

• Training data : i = 1� 2� � � � �N .
• Subtraining dataset: i = 1� 2� � � � �Nl.• Input variables: j = 1� 2� � � � � P.
• Neuron pairs in the hidden layer: l = 1� 2� � � � �M.
• Number of existing functions: h = 1� 2� � � � � Q.
• Number of parameters in Fl pf = 1� 2� � � � � Lpf .
• Learning iterations: k = 1� 2� � � � .

The equations for parameter optimisation are described below.
Consider the system having P inputs, one output, and M neuron pairs in the

hidden layer; the output value of the system can be calculated for an input vector
xi = �xi1� xi2 � � �� xiP� by Eq. (7.1):

y�xi� = G1�xi� F1�xi�+G2�xi�F2�xi�+· · ·+GM�xi� FM�xi� (7.2)

Here, Fl are transfer functions and each of them has parameters bpf � pf =
1� 2� � � � � Lpf ,
and

Gl�xi� = �l

P∏

j=1

exp�− �xij −mlj�
2

2	lj
2

� (7.3)

are Gaussian kernel functions. Here,
 represents a connection vector between
the hidden layer and the output layer; ml is the centre of Gl . �l is regarded as
the width of Gl , or a ‘radius’ of the cluster l. If a vector x is the same as ml, the
neuron pair Gl�x�Fl�x� has the maximum output, Fl�x�; the output will be between
�0�607 ∼ 1�×Fl�x� if the distance between x and ml is smaller than �l ; the output
will be close to 0 if x is far away from ml.

Suppose the KBNN is given the training input–output data pairs [xi� ti]; the local
learning minimizes the following objective function for each transfer function on
the corresponding cluster,

El =
1

2

Nl∑

i=1

�fh�xi�− ti�
2 (7.4)

Here, Nl is the number of data that belong to the lth cluster, and the global learning
minimizes the following objective function on the whole training dataset,

E = 1

2

N∑

i=1

�y�xi�− ti�
2 (7.5)

A gradient descent algorithm (backpropagation algorithm) is used to obtain the
recursions for updating the parameters b,
, m, and �, so that El of Eq. (7.4) and E
of Eq. (7.5) are minimised. The initial values of these parameters can be obtained
from original functions (for b), random values or least-squares method (for
),
and the result of clustering (for m and �):

bpf �k+1� = bpf �k�−�b

El

bpf

�for local learning� (7.6)

218 Evolving Connectionist Systems

bpf �k+1� = bpf �k�−�b

E

bpf

�for global learning� (7.7)

�l�k+1� = �l�k�− ��

�l�k�

N∑

i=1

�Gl�xi�Fl�xi��y�xi�− ti�� (7.8)

mlj�k+1� = mlj�k�−�m

N∑

i=1

{
Gl�xi�Fl�xi��y�xi�− ti��xij −mlj�

	2
lj

}

(7.9)

	lj�k+1� = 	lj�k�−�	

N∑

i=1

{
Gl�xi�Fl�xi��y�xi�− ti��xij −mlj�

2

	3
lj

}

(7.10)

Here, �b� �
� �m, and �	 are learning rates for updating the parameters b, �, m,
and 	 , respectively;

El

bpf

and

E

bpf

respectively, depend on existing and selected functions, e.g. the MDRD function
(this is the GFRR case study introduced in Chapter 5) and the output function can
be defined as follows.

f�x� = GFR = b0 ×xb1
1 ×xb2

2 ×xb3
3 ×xb4

4 ×xb5
5 ×xb6

6 (7.11)

In this function, x1� x2� x3� x4� x5, and x6 represent Scr, age, gender, race, BUN, and
Alb, respectively. So that, for the local learning:

El

b0

=
Nl∑

i=1

�f�xi�− ti� (7.12)

El

bp

= x
bp
p ln bp

Nl∑

i=1

�f�xi�− ti�� p = 1� 2� � � � � 6 (7.13)

and for the global learning (suppose the MDRD function is selected for the lth
cluster):

E

b0

= Gl�xi�
N∑

i=1

�y�xi�− ti� (7.14)

Evolving Integrated Multimodel Systems 219

E

bp

= Gl�xi�x
bp
p ln bp

N∑

i=1

�y�xi�− ti�� p = 1� 2� � � � � 6 (7.15)

For both local and global learning, the following iterative design method is used:

1. Fix the maximum number of learning iterations (maxKl for the local learning
and maxK for the global learning) and the minimum value of the error on
training data (minEl for the local learning and minE for the global learning).

2. Perform Eq. (7.6) repeatedly for the local learning until the number of learning
iterations k >maxKl or the error El <= minEl (El is calculated by Eq. (7.4)).

3. Perform Eqs. (7.7)–(7.10) repeatedly for the global learning until the number
of learning iterations k >maxK or the error E <= minE (E is calculated by Eq.
(7.5)).

In this learning procedure, we use the clustering method ECM (evolving clustering
method; see Chapter 2) for clustering, and a gradient descent algorithm for
parameter optimisation. Although some other clustering methods can be used such
as K-means, fuzzy C-means, or the subtractive clustering method, ECM is more
appropriate because it is a fast one-pass algorithm and produces well-distributed
clusters. The number of clusters M depends on the data distribution in the input
space and it can be set up by experience, probing search, or optimisation methods
(e.g. the genetic algorithm). In this research, we do not use any optimisation
method to adjust M. For generalisation and simplicity, we use in the KBNN
learning algorithm a standard general gradient descent method. The Levenberg–
Marquardt, one-step second backpropagation algorithm, least squares method,
SVD-QR method, or some others can be applied in the KBNN for parameter
optimisation instead of a general gradient descent algorithm.

7.3.3 A Case Study Example

The method is applied in Song et al. (2006) for the creation of a KBNN model for
the prediction of renal functions using the medical dataset described in Chapter 5.
Nine existing regression formulas for the prediction of renal function are taken
as knowledge-based transfer functions to be used in the KBNN model. Using
the proposed model, more accurate results than the existing formulas or other
well-known connectionist models have been obtained.

7.4 Ensemble Learning Methods for ECOS

The above two sections presented ECOS-based methods for integrating existing
models and new data. Here some methods for evolving several models, including
ECOS models, for solving a common problem, are presented. Using several inter-
acting models, instead of one, may improve the performance of the final system
as different models may represent different aspects of the problem and the data
available (Abbass, 2004; Potter and De Jong, 2000; Kidera et al., 2006; Duell et al.,
2006; Liu and Yao, 1999).

220 Evolving Connectionist Systems

7.4.1 Negative Correlation Ensemble Learning

Negative correlation ensemble learning has been developed as an efficient method
for improving the accuracy and the speed in ensembles of learning models when
compared to single models. Several methods developed by Xin Yao et al. have
been already published (Liu and Yao, 1999; Duell et al., 2006).

This section presents a cooperative neural network ensemble learning method
based on negative correlation learning (from Chan and Kasabov (2005)). It allows
integration of different network models and fast implementation on both serial and
parallel machines. Results demonstrate competitive performance to the original
negative correlation learning method at significantly reduced communication
overhead.

Effective use of a neural network ensemble requires three critical factors: first, an
efficient ensemble learning scheme that is typically implemented through parallel
computing because the training of multiple neural networks is computationally
intensive; second, integration of different network models, e.g. MLPs and RBFs to
provide a more diversified output; and third, a cooperative learning method to
promote interaction between networks.

For cooperative learning, an effective method called negative correlation (NC)
learning was proposed by Liu and Yao (1999) and has been shown both theoreti-
cally and empirically to improve ensemble generalisation performance. The error
functions of the networks are modified to promote negatively correlated prediction
errors, which in effect cause the networks to diversify in their outputs and each
network to specialise in a particular aspect of the data. However, despite its effec-
tiveness, Liu and Yao’s method requires high communication overhead between
the networks and it is applicable only to the ensemble of backpropagation-type
networks, which hinder parallel speedup and integration of different network
models, respectively. Its practicality is therefore diminished.

The novel NC (negative correlation) learning method (Chan and Kasabov, 2005)
presented here alleviates the drawbacks of Liu and Yao’s method. We generate
new sets of data called correlation-corrected data by ‘correcting’ the original
training data with the error correlation information. Now, instead of using penalty
functions, NC learning is achieved by simply training the networks with these
correlation-corrected data. This method offers two advantages: first, no error
function recoding is required and second, updating correlation-corrected data
requires much less communication overhead. It is therefore very suitable for
parallel execution of NC learning even with an ensemble of different models in a
distributed computing environment.

Liu and Yao’s NC learning requires: (a) introduction of a correlation penalty
function into the error function of each network, and (b) communication between
networks on a pattern-by-pattern basis.

Let T = �x� d� = ��x�1�� d�1��� �x�2�� d�2��� � � � � �x�N�� d�N��� represents the
training data where N is the number of patterns and �x� d� are the input
and output (target) vectors, respectively. We form an ensemble of M networks
whose joint output F is the average of all network outputs Fi� I = �1� 2� � � � � M�.

Evolving Integrated Multimodel Systems 221

Consequently, the error E is also the average of all network errors Ei:

F�n� = 1

M

M∑

i=1

Fi�n� E�n� = 1

M

M∑

i=1

Ei�n� (7.16)

The correlation penalty Pi measures the error correlation between the ith network
and the rest of the ensemble and it is formulated as follows. Recall that the goal of
generalisation is to learn the generating function of the output and not the target
data themselves. We use F�n� to approximate the generating function such that
�Fi�n�–F�n�� approximates the error of the ith network and

∑
∀j �=i�Fj�n�–F�n�� the

joint error of the rest of the ensemble from the generating function. The error
correlation Pi is then obtained as their product

Pi�n� = �Fi�n�− F�n��
∑

∀j �=i
�Fj�n�− F�n�� (7.17)

The new error function Ei is a weighted sum of the original error function and
the penalty function Pi, given by

Ei�n� = 1

2
�Fi�n�− d�n��2 +�Pi�n� (7.18)

where 0 ≤ � ≤ 1 is the hyperparameter (a term used to describe a similar instance
in network regularisation) that adjusts the strength of the correlation penalty. For
adjusting the weights of the ith network through standard backpropagation, the
derivative of the ensemble error E with respect to Fi is obtained using (7.16),
(7.17), and (7.18)

E�n�

Fi�n�
= �Fi�n�− d�n��− 2��M −1�

M
�Fi�n�− F�n�� (7.19)

The computation of the derivative in (7.19) requires periodic updating of the
ensemble output F�n� and it is on a pattern-by-pattern basis in Liu’s method. The
communication overhead is therefore very high.

Correlation-corrected data are transformed target data to which ordinary
training of the networks in the ensemble will automate NC learning. Let ci denote
the correlation-corrected data for the ith network; it is derived as the desired
network output Fi that minimizes the ensemble error E, i.e. when the derivative
of E in (7.19) is set to zero

At

E�n�

Fi�n�
= 0� Fi�n� = ci�n� = d�n�−KF�n�

1−K
where K = 2��M −1�

M
(7.20)

The generation of ci in (7.20) requires only a simple linear combination between the
original target d�n� and the ensemble output F�n�. Like the original method, F�n�
must be updated periodically. However, the frequency of updating is significantly
reduced because training to correlation-corrected data (7.20) is more stable and
robust to error than training with a correlation-corrected gradient (7.19) as in Liu
and Yao’s method. This hypothesis is empirically verified (shown later) as we find
that updating F�n� over a number of training epochs (each epoch denotes one

222 Evolving Connectionist Systems

presentation of the whole set of training patterns) rather than over every training
pattern as in Liu and Yao’s case offers very similar performance. The longer update
interval reduces communication overhead and allows effective parallel execution
of NC learning in a coarse-grain distributed computing environment. Figure 7.8
shows the distributed computing environment used in the experiment.

In Fig 7.8 each network of the ensemble operates on a different processor node.
A control centre is established to centralize all information flow and its tasks
are (a) to generate the correlation-corrected data for each network, (b) to send
them out, and (c) to collect the trained network outputs. Let gupdate and gmax

denote the number of epochs between each ci update and the maximum number
of epochs allowable. The updating of the correlation-corrected data ci may be
implemented synchronously (after all networks have finished trained for gupdate

epochs) or asynchronously (whenever a network has finished training for gupdate

epochs). In this work we implement the latter as both methods perform similarly.
The procedures are summarized in the following pseudo-code.

Step 1: Initialise M networks with random weights. Partially train each network
to the training data T ={x� d} for gupdate epochs and then obtain network output.
Step 2: Upon receipt of the ith network output Fi at the control centre:
(a) Update the ensemble output F.
(b) Create the c-corrected target ci using (7.20) and send it to the ith network
(c) Train the ith network to Ti = �x� ci� for gupdate epochs.
(d) Send network output Fi to control centre.
Step 3: Stop if each network has been trained for a total of gmax epochs.

Case Study Experiment

We compare the performance of NC learning using correlation-corrected data
with Liu’s original method on predicting the Mackey–Glass time series, which is a
quasiperiodic and chaotic time series generated by

ẋ�t� = �x�t�+ �x�t − ��

1+x10�t − ��

Control
Centre

network
2

network
3network

1

F1

c1
F3

c2 F2

c3

Fig. 7.8 An example of a distributed computing environment, suitable for implementing ensemble negative
correlation (NC) learning using correlation-corrected data (Chan and Kasabov, 2005).

Evolving Integrated Multimodel Systems 223

with parameters
 = 0.2, � = 0�1, and � = 14 and initial conditions x�0� =
1�2, x�t–�� = 0 for 0 ≤ t ≤ � and time-step = 1. The input variables are
�x�t�� x�t–6�� x�t–12�� x�t–18�� and the output variable is x�t+6�. Both the training
set and test set consist of 500 data points taken from the 118–617th time point and
the 618–117th time point, respectively. Most of our ensemble setup follows Liu’s
setup. The ensemble contains M = 20 multilayer perceptron networks (MLPs) in
the ensemble. Each network contains one hidden layer of six neurons. The hidden
and output activation functions are the hyperbolic tangent and linear function,
respectively. The hyperparameter � is set to 0.5 and the maximum number of
training epochs gmax is set to 10,000. We experimented with a set of update intervals
gupdate = �10� 20� 40� � � � � 2560] to investigate their effect on the performance. Each
trial was repeated ten times. Performance was assessed by the prediction error
on the test set measured in normalised root mean square (NRMS) error, which is
simply the root mean square error divided by the standard deviation of the series.
The results are plotted in Fig. 7.9 and shown in Table 7.2.

Figure 7.9 shows that NC learning using correlation-corrected data is effective over
a range of update intervals gupdate. The error is highest at 0.018 when gupdate = 10, and
decreases gradually with increasing gupdate until it stabilises to roughly 0.0115 when
gupdate > 100. Although this phenomenon is contrary to the intuition that a shorter
update interval produces more network interaction and leads to better overall perfor-
mance, it may be attributed to an inappropriate choice of the hyperparameter � at
different update intervals (Liu and Yao (1999)) show that the ensemble performance is
highly sensitive to the value of�). It causes no problem, as longer update intervalgupdate

is actually advantageous in reducing the required communication overhead.
NC learning using correlation-corrected data is clearly more cost-effective in

terms of communication overhead when comparing with Liu and Yao’s method.
At gupdate = 100, it scores slightly higher error (0.0115 cf 0.0100), yet it requires

101 102 1030.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

0.019

quantiles

median

Fig. 7.9 Plot of test error versus update interval gupdate for the NC-ensemble learning (Chan and Kasabov, 2005).

224 Evolving Connectionist Systems

Table 7.2 Comparison of test error obtained with the use of different methods for ensemble learning
(Chan and Kasabov, 2005).

Method No. network communication NRMSE

Cooperative ensemble learning system (CELS) 5 × 106 0.0100
Negative correlation (NC) learning using correlation
corrected data (gupdate = 100)

100 0.0115

EPNet N/A 0.02
Ensemble learning with independent network training N/A 0.02
Cascade-correlation (CC) learning N/A 0.06

network communications of only (20 networks × (10,000 epochs/100 epochs)) =
2000 rather than (500 training patterns ×10� 000 epochs) = 5×106, which is 2�5×103

times smaller. Its error (0.0115) is by far lower than that of other works such as
EPNet (0.02), Ensemble learning with independent network training (0.02), and
cascade-correlation (CC) learning (0.06) (see Table 7.2).

The use of correlation-corrected data provides a simple and practical way to
implement negative correlation ensemble learning. It allows easy integration of
models from different sources and it facilitates effective parallel speedup in a
coarse-grain distributed environment due to its low communication overhead
requirement. Experimental results on Mackey–Glass series show that its general-
isation performance is comparable to the original NC method, yet it requires a
significantly smaller (2.5 × 103 times) number of network communications.

7.4.2 EFuNN Ensemble Construction Using a Clustering Method
and a Co-Evolutionary Genetic Algorithm

Using an ensemble of EFuNNs for solving a classification problem was first
introduced in Kasabov (2001c), where the data were clustered using an evolving
clustering method (ECM) and for each cluster, an EFuNN model was evolved. But
this method did not include optimization of the parameters of the EFuNNs.

In Chapter 6 we presented several methods for parameter and feature
optimization, both off-line and online, of ECOS, and in particular of EFuNN
individual models. Here we discuss the issue of co-evolving multiple EFuNN
models, each of them having their parameters optimised.

When multiple EFuNNs are evolved to learn from different subspaces of the
problem space (clusters of data) and each of them is optimised in terms of its
parameters relevant to the corresponding cluster, that could lead to an improved
accuracy and a speedup in learning, as each EFuNN will have a smaller dataset to
learn. This is demonstrated in a method (CONE) proposed by Minku and Ludemir
(2006). The method consists of the following steps.

1. The data are clustered using an ECM clustering method (see Chapter 2), or
other clustering methods, in K clusters.

2. For each cluster, a population of EFuNN is evolved with their parameters
optimised using a co-evolutionary GA (see Potter and de Jong (2000)), and the
best one is selected after a certain number of iterations.

Evolving Integrated Multimodel Systems 225

3. The output is calculated as the sum of weighted outputs from all the best models
for each cluster.

The above procedure is applied on several benchmark datasets, such as
Iris, Wine, Glass, and Cancer from the UCI Machine Learning Repository
(http://www.ics.uci.edu/∼mlearn/MLRepository.html). The classification accuracy
of the ensembles of EFuNN is about 20% better than using a single optimised
EFuNN. The following ranges for the EFuNN parameters are used: m-of-n [1,15],
error threshold [0.01,0.6], maximum radius [0.01, 0.8], initial sensitivity threshold
[0.4,0.99], and number of membership functions [2,8]. The maximum radius (Dthr)
for the clustering method ECF was selected differently for each of the datasets.

7.5 Integrating ECOS and Evolving Ontologies

Ontology is a structured representation of concepts, knowledge, information, and
data on a particular problem. Evolving ontologies describe a process rather than a
static model (Gottgtroy et al., 2006). The evolving characteristic of an ontology is
achieved through the use of learning techniques inherited from data mining and
through its meta-knowledge representation. For example, the hierarchical structure
of an evolving ontology can be determined using the evolving clustering method
ECM (Chapter 2), which permits an instance to be part of more than one cluster.
At the same time, evolving ontology uses its meta-knowledge representation to
cope with this multiple clustering requirement.

Figure 7.10 gives an example of linking an ECOS-based software environment
NeuCom (http://www.theneucom.com) with an ontology system for bioinformatics
and biomedical applications, so that the learning process is enacted via ECOS and
the resulting knowledge is represented in the ontology formalism (from Gottgtroy
et al. (2006)).

In recent years ontology structures have been increasingly used to provide a
common framework across disparate systems, especially in bioinformatics, medical
decision support systems, and knowledge management. The use of ontology is a
key towards structuring biological data in a way that helps scientists to understand
the relationships that exist between terms in a specialized area of interest, as
well as to help them understand the nomenclature in areas with which they are
unfamiliar.

For example, gene ontology (GO; http://www.geneontology.org), has been
widely used in interdisciplinary research to analyse relationships between genes
and proteins across species, including data, literature, and conceptual structured
and unstructured information.

In addition to research-based literature, the amount of data produced daily by
medical information systems and medical decision support systems is growing
at a staggering rate. We must consider that scientific biomedical information
can include information stored in the genetic code, but also can include experi-
mental results from various experiments and databases, including patient statistics
and clinical data. Large amounts of information and knowledge are available in
medicine. Making medical knowledge and medical concepts shared over applica-
tions and reusable for different purposes is crucial.

226 Evolving Connectionist Systems

Fig. 7.10 Integrated ECOS and ontology system for applications in bioinformatics and medical decision support
(from Gottroy et al., 2006).

A biomedical ontology is an organizational framework of the concepts involved
in biological entities and processes as well as medical knowledge in a system
of hierarchical and associative relations that allows reasoning about biomedical
knowledge. A biomedical ontology should provide conceptual links between data
from seemingly disparate fields. This might include, for example, the infor-
mation collected in clinical patient data for clinical trial design, geographical
and demographic data, epidemiological data, drugs, and therapeutic data, as well
as from different perspectives as those collected by nurses, doctors, laboratory
experts, research experiments, and so on.

Figure 7.11 shows a general ontology scheme for bioinformatics and medical
decision support.

There are many software environments for building domain-oriented
ontology systems, one of them being Protégé, developed at Stanford (http://
protege.stanford.edu/).

7.6 Conclusion and Open Questions

This chapter presents general frameworks for building multimodel evolving
machines that make use of the methods and the systems presented in Chapters 2
through 6. Issues such as the biological plausibility and complexity of an evolving

Evolving Integrated Multimodel Systems 227

Fig. 7.11 A general ontology scheme for bioinformatics and medical decision support.

system, online parameter analysis and feature selection, and hardware imple-
mentation, are difficult and need rigid methodologies that would help the future
development and numerous applications of ECOS.

Some open problems raised in the chapter are:

1. How do we build evolving machines that learn the rules that govern the evolving
of both their structure and function in an interactive way?

2. How can different ECOS, that are part of an evolving machine, develop links
between each other in an unsupervised mode?

3. How can ECOS and modules that are part of an evolving machine learn and
improve through communication with each other? They may have a common
goal.

4. Can evolving machines evolve their algorithm of operation based on very few
prior rules?

5. How can evolving machines create computer programs that are evolving
themselves?

6. What do ECOS need in order for them to become reproducible, i.e. new ECOS
generated from an existing ECOS?

7. How can we model the instinct for information in an ECOS machine?

7.7 Further Reading

Principles of ECOS and evolving connectionist machines (Kasabov, 1998–2006)

• Dynamic Statistical Modelling (West and Harrison, 1989)
• Artificial Life (Adami, 1998)

228 Evolving Connectionist Systems

• Self-adaptation in Evolving Systems (Stephens et al., 2000)
• Intelligent Agents (Woldrige and Jennings, 1995)
• Evolvable Robots (Nolfi and Floreano, 2000)
• Hierarchical Mixture of Experts (Jordan and Jacobs, 1994)
• Cooperation of ANN (de Bollivier et al., 1990)
• Integrated Kernel and Regression ANN Models (Song et al., 2006)
• Evolving Ensembles of ANN (Abbass, 2004; Kidera et al., 2006)
• Negative Correlation Ensembles of ANN (Liu and Yao, 1999; Duell et al., 2006;

Chan and Kasabov, 2005)
• Ensembles of EFuNNs (Minku and Ludemir, 2006)
• Cooperative Co-evolution (Potter and De Jong, 2000)

PART II
Evolving Intelligent Systems

Whereas in Part I of the book generic evolving learning methods are presented,
in this part further methods are introduced, along with numerous applications of
ECOS to various theoretical and application-oriented problems in:

• Bioinformatics (Chapter 8)
• Brain study (Chapter 9)
• Language modelling (Chapter 10)
• Speech recognition (Chapter 11)
• Image recognition (Chapter 12)
• Multimodal information processing (Chapter 13)
• Robotics and modelling economic and ecological processes (Chapter 14)

All these application-oriented evolving intelligent systems (EIS) are characterised
by adaptive, incremental, evolving learning and knowledge discovery. They only
illustrate the applicability of ECOS to solving problems and more applications are
expected to be developed in the future.

The last chapter, 15, discusses a promising future direction for the development
of quantum inspired EIS.

8. Adaptive Modelling and Knowledge
Discovery in Bioinformatics

Bioinformatics brings together several disciplines: molecular biology, genetics,
microbiology, mathematics, chemistry and biochemistry, physics, and, of course,
informatics. Many processes in biology, as discussed in the introductory chapter,
are dynamically evolving and their modelling requires evolving methods and
systems. In bioinformatics new data are being made available with a tremendous
speed that would require the models to be continuously adaptive. Knowledge-based
modelling, that includes rule and knowledge discovery, is a crucial requirement. All
these issues contribute to the evolving connectionist methods and systems needed
for problem solving across areas of bioinformatics, from DNA sequence analysis,
through gene expression data analysis, through protein analysis, and finally to
modelling genetic networks and entire cells as a system biology approach. That
will help to discover genetic profiles and to understand better diseases that do
not have a cure thus far, and to understand better what the human body is made
of and how it works in its complexity at its different levels of organisation (see
Fig. 1.1). These topics are presented in the chapter in the following order.

• Bioinformatics: information growth and emergence of knowledge
• DNA and RNA sequence data analysis and knowledge discovery
• Gene expression data analysis, rule extraction, and disease profiling
• Clustering of time-course gene expression data
• Protein structure prediction
• Gene regulatory networks and the system biology approach
• Summary and open problems
• Further reading

8.1 Bioinformatics: Information Growth, and Emergence
of Knowledge

8.1.1 The Central Dogma of Molecular Biology: Is That the General
Evolving Rule of Life?

With the completion of the first draft of the human genome and the genomes of
some other species (see, for example, Macilwain et al. (2000) and Friend (2000)) the

231

232 Evolving Connectionist Systems

task is now to be able to process this vast amount of ever-growing information and
to create intelligent systems for prediction and knowledge discovery at different
levels of life, from cell to whole organisms and species (see Fig. I.1).

The DNA (dioxyribonucleic acid) is a chemical chain, present in the nucleus
of each cell of an organism, and it consists of pairs of small chemical molecules
(bases, nucleotides) which are: adenine (A), cytosine (C), guanidine (G), and
thymidine (T), ordered in a double helix, and linked together by a dioxyribose
sugar phosphate nucleic acid backbone.

The central dogma of molecular biology (see Fig. 8.1) states that the DNA
is transcribed into RNA, which is translated into proteins, which process is
continuous in time as long as the organism is alive (Crick, 1959).

The DNA contains millions of nucleotide base pairs, but only 5% or so is used
for the production of proteins, and these are the segments from the DNA that
contain genes. Each gene is a sequence of base pairs that is used in the cell to
produce proteins. Genes have lengths of hundreds to thousands of bases.

The RNA (ribonucleic acid) has a similar structure as the DNA, but here
thymidine (T) is substituted by uridine (U). In the pre-RNA only segments that
contain genes are extracted from the DNA. Each gene consists of two types of
segments: exons, that are segments translated into proteins, and introns, segments
that are considered redundant and do not take part in the protein production.
Removing the introns and ordering only the exon parts of the genes in a sequence
is called splicing and this process results in the production of messenger RNA (or
mRNA) sequences.

mRNAs are directly translated into proteins. Each protein consists of a sequence
of amino acids, each of them defined as a base triplet, called a codon. From
one DNA sequence there are many copies of mRNA produced; the presence of
certain gene in all of them defines the level of the gene expression in the cell and
can indicate what and how much of the corresponding protein will be produced
in the cell.

The above description of the central dogma of molecular biology is very much
a simplified one, but that would help to understand the rationale behind using
connectionist and other information models in bioinformatics (Brown, et al. 2000).

Fig. 8.1 A schematic representation of the central dogma of molecular biology: from DNA to RNA (transcription),
and from RNA to proteins (translation).

Modelling and Knowledge Discovery in Bioinformatics 233

Genes are complex chemical structures and they cause dynamic transformation
of one substance into another during the whole life of an individual, as well as the
life of the human population over many generations. When genes are ‘in action’,
the dynamics of the processes in which a single gene is involved are very complex,
as this gene interacts with many other genes and proteins, and is influenced by
many environmental and developmental factors.

Modelling these interactions, learning about them, and extracting knowledge, is
a major goal for bioinformatics. Bioinformatics is concerned with the application
of the methods of information sciences for the collection, analysis, and modelling
of biological data and the knowledge discovery from biological processes in living
organisms (Baldi and Brunak, 1998, 2001; Brown et al. 2000).

The whole process of DNA transcription, gene translation, and protein
production is continuous and it evolves over time. Proteins have 3D structures
that unfold over time and are governed by physical and chemical laws. Proteins
make some genes express and may suppress the expression of other genes. The
genes in an individual may mutate, slightly change their code, and may therefore
express differently at another time. So, genes may change, mutate, and evolve in
a lifetime of a living organism.

Modelling these processes is an extremely complex task. The more new infor-
mation is made available about DNA, gene expression, protein creation, and
metabolism, the more accurate the information models will become. They should
adapt to the new information in a continuous way. The process of biological
knowledge discovery is also evolving in terms of data and information being
created continuously.

8.1.2 Life-Long Development and Evolution in Biological Species

Through evolutionary processes (evolution) genes are slowly modified through
many generations of populations of individuals and selection processes
(e.g. natural selection). Evolutionary processes imply the development of gener-
ations of populations of individuals where crossover, mutation, and selection of
individuals based on fitness (survival) criteria are applied in addition to the devel-
opmental (learning) processes of each individual.

A biological system evolves its structure and functionality through both lifelong
learning of an individual and evolution of populations of many such individuals;
i.e. an individual is part of a population and is a result of evolution of many
generations of populations, as well as a result of its own development, of its lifelong
learning process.

The same genes in the genotype of millions of individuals may be expressed
differently in different individuals, and within an individual, in different cells of the
individual’s body. The expression of these genes is a dynamic process depending not
only on the types of the genes, but on the interaction between the genes, and the
interaction of the individual with the environment (the nurture versus nature issue).

Several principles are useful to take into account from evolutionary biology:

• Evolution preserves or purges genes.
• Evolution is a nonrandom accumulation of random changes.

234 Evolving Connectionist Systems

• New genes cause the creation of new proteins.
• Genes are passed on through evolution: generations of populations and selection

processes (e.g. natural selection).

There are different ways of interpreting the DNA information (see Hofstadter
(1979)):

• DNA as a source of information and cells as information processing machines
(Baldi and Brunak, 2001)

• DNA and the cells as stochastic systems (processes are nonlinear and dynamic,
chaotic in a mathematical sense)

• DNA as a source of energy
• DNA as a language
• DNA as music
• DNA as a definition of life

8.1.3 Computational Modelling in Molecular Biology

Following are the main phases of information processing and problem solving in
most of the bioinformatics systems (Fig. I.3.)

1. Data collection: Collecting biological samples and processing them.
2. Feature analysis and feature extraction: Defining which features are more

relevant and therefore should be used when creating a model for a particular
problem (e.g. classification, prediction, decision making).

3. Modelling the problem: Defining inputs, outputs, and type of the model (e.g.,
probabilistic, rule-based, connectionist), training the model, and statistical
verification.

4. Knowledge discovery in silico: New knowledge is gained through the analysis of
the modelling results and the model itself.

5. Verifying the discovered knowledge in vitro and in vivo: Biological experiments
in both the laboratory and in real life to confirm the discovered knowledge.

Some tasks in bioinformatics are characterised by:

1. Small datasets, e.g. 100 or fewer samples.
2. Static datasets, i.e. data do not change in time once they are used to create a

model.
3. No need for online adaptation and training on new data.

For these tasks the traditional statistical and AI techniques are well suited. The
traditional, off-line modelling methods assume that data are static and no new
data are going to be added to the model. Before a model is created, data are
analysed and relevant features are selected, again in an off-line mode. The off-
line mode usually requires many iterations of data propagation for estimating
the model parameters. Such methods for data analysis and feature extraction
utilise principal component analysis (PCA), correlation analysis, off-line clustering

Modelling and Knowledge Discovery in Bioinformatics 235

techniques (such as K-means, fuzzy C-means, etc.), self-organising maps (SOMs),
and many more. Many modelling techniques are applicable to these tasks, for
example: statistical techniques such as regression analysis and support vector
machines; AI techniques such as decision trees, hidden Markov models, and finite
automata; and neural network techniques such as MLP, LVQ, and fuzzy neural
networks.

Some of the modelling techniques allow for extracting knowledge, e.g. rules
from the models that can be used for explanation or for knowledge discovery. Such
models are the decision trees and the knowledge-based neural networks (KBNN;
Cloete and Zurada, (2000)).

Unfortunately, most of the tasks for data analysis and modelling in bioinfor-
matics are characterized by:

1. Large dimensional datasets that are updated regularly.
2. A need for incremental learning and adaptation of the models from input data

streams that may change their dynamics in time.
3. Knowledge adaptation based on a continuous stream of new data.

When creating models of complex processes in molecular biology the following
issues must be considered.

• How to model complex interactions between genes and proteins, and between
the genome and the environment.

• Both stability and repetitiveness are features that need to be modelled, because
genes are relatively stable carriers of information.

• Dealing with uncertainty, for example, when modelling gene expressions, there
are many sources of uncertainty, such as

� Alternative splicing (a splicing process of same RNAs resulting in different
mRNAs).

� Mutation in genes caused by: ionizing radiation (e.g. X-rays); chemical contam-
ination, replication errors, viruses that insert genes into host cells, etc. Mutated
genes express differently and cause the production of different proteins.

For large datasets and for continuously incoming data streams that require the
model and the system to rapidly adapt to new data, it is more appropriate to use
online, knowledge-based techniques and ECOS in particular as demonstrated in
this chapter.

There are many problems in bioinformatics that require their solutions in the
form of a dynamic, learning, knowledge-based system. Typical problems that are
also presented in this chapter are:

• Discovering patterns (features) from DNA and RNA sequences (e.g., promoters,
RBS binding sites, splice junctions)

• Analysis of gene expression data and gene profiling of diseases
• Protein discovery and protein function analysis
• Modelling the full development (metabolic processes) of a cell (Tomita, 2001)

236 Evolving Connectionist Systems

An ultimate task for bioinformatics would be predicting the development of an
organism from its DNA code. We are far from its solution now, but many other
tasks on the way can be successfully solved through merging information sciences
with biological sciences as demonstrated in this chapter.

8.2 DNA and RNA Sequence Data Analysis
and Knowledge Discovery

8.2.1 Problem Definition

Principles of DNA Transcription and RNA Translation
and Their Computational Modelling

As mentioned previously, only two to five percent of the human genome (the
DNA) contains information that concerns the production of proteins (Brown
et al., 2000). The number of genes contained in the human genome is about
40,000 (Friend, 2000). Only the gene segments are transcribed into RNA sequences.
The transcription is achieved through special proteins, enzymes called RNA
polymerase, that bind to certain parts of the DNA (promoter regions) and start
‘reading’ and storing in an mRNA sequence each gene code.

Analysis of a DNA sequence and identifying promoter regions is a difficult task.
If it is achieved, it may make possible to predict, from DNA information, how this
organism will develop or, alternatively, what an organism looked like in retrospect.

In simple organisms, bacteria (prokaryotic organisms), DNA is transcribed
directly into mRNA that consists of genes that contain only codons (no intron
segments). The translation of the genes into proteins is initiated by proteins called
ribosomes, that bind to the beginning of the gene (ribosome binding site) and
translate the sequence until reaching the termination area of the gene. Finding
ribosome binding sites in bacteria would reveal how the bacteria would act and
what proteins would be produced.

In higher organisms (that contain a nucleus in the cell) the DNA is first
transcribed into a pre-mRNA that contains all the regions from the DNA that
contain genes. The pre-RNA is then transcribed into many sequences of functional
mRNAs through a splicing process, so that the intron segments are deleted from
the genes and only the exon segments, that account for proteins, are extracted.
The functional mRNA is now ready to be translated into proteins.

Finding the splice junctions that separate the introns from the exons in a pre-
mRNA structure, is another difficult task for computer modelling and pattern
recognition, that once solved would help us understand what proteins would be
produced from a certain mRNA sequences. This task is called splice junction
recognition.

But even having recognized the splice junctions in a pre-mRNA, it is extremely
difficult to predict which genes will really become active, i.e. will be translated into
proteins, and how active they will be: how much protein will be produced.That

Modelling and Knowledge Discovery in Bioinformatics 237

Fig. 8.2 A hypothetical scheme of using neural networks for DNA/RNA sequence analysis.

is why gene expression technologies (e.g. microarrays) have been introduced, to
measure the expression of the genes in mRNAs. The level of a gene expression
would suggest how much protein of this type would be produced in the cell, but
again this would only be an approximation.

Analysis of gene expression data from microarrays is discussed in the next
section. Here, some typical tasks of DNA and RNA sequence pattern analysis
are presented, namely ribosome binding site identification and splice junction
recognition.

Recognizing patterns from DNA or from mRNA sequences is a way of recog-
nizing genes in these sequences and of predicting proteins in silico (in a computer).
For this purpose, usually a ‘window’ is moved along the DNA sequence and data
from this window are submitted to a classifier (identifier) which identifies if one
of the known patterns is contained in this window. A general scheme of using
neural networks for sequence pattern identification is given in Fig. 8.2.

Many connectionist models have been developed for identifying patterns in a
sequence of RNA or DNA (Fu, 1999; Baldi and Brunak, 2001). Most of them deal
with a static dataset and use multilayer perceptrons MLP, or self-organising maps
SOMs.

In many cases, however, there is a continuous flow of data that is being made
available for a particular pattern recognition task. New labelled data need to be
added to existing classifier systems for a better classification performance on future
unlabelled data. This can be done with the use of the evolving models and systems.

Several case studies are used here to illustrate the application of evolving systems
for sequence DNA and RNA data analysis.

8.2.2 DNA Promoter Recognition

Only two to five percent of the human genome (the DNA) contains useful infor-
mation that concerns the production of proteins. The number of genes contained
in the human genome is about 40,000. Only the gene segments are transcribed into

238 Evolving Connectionist Systems

RNA sequences and then translated into proteins. The transcription is achieved
through special proteins, enzymes called RNA polymerase, that bind to certain
parts of the DNA (promoter regions) and start ‘reading’ and storing in a mRNA
sequence each gene code. Analysis of a DNA sequence and identifying promoter
regions is a difficult task. If it is achieved, it may make possible to predict, from
a DNA information, how this organism will develop or, alternatively, what an
organism looked like in retrospect. The promoter recognition process is part of
a complex process of gene regulatory network activity, where genes interact with
each other over time, defining the destiny of the whole cell.

Extensive analysis of promoter recognition methods and experimental results
are presented in Bajic and Wee (2005).

Case Study

In Pang and Kasabov (2004) a transductive SVM is compared with SVM methods
on a collection of promoter and nonpromoter sequences. The promoter sequences
are obtained from the eukaryotic promoter database (EPD) http://www.epd.isb-
sib.ch/. There are 793 different vertebrate promoter sequences of length
250 bp. These 250 bp long sequences represent positive training data. We also
collected a set of nonoverlapping human exon and intron sequences of length
250 bp each, from the GenBank database: http://www.ncbi.nlm.nih.gov/Genbank/
GenbankOverview.html, Rel. 121. For training we used 800 exon and 4000 intron
sequences.

8.2.3 Ribosome Binding Site Identification

Case Study. A Ribosome Binding Site Identification in E.coli Bacteria

The following are the premises of the task and the parameters of the developed
modelling system. The dataset contains 800 positive (each of them contains a RBS)
and 800 negative base sequences (they do not contain a RBS), each of them 33
bases long.

The task is to develop a RBS identification system, so that if a new 33 base
long sequence is submitted, the system will identify if there is a RBS within this
sequence, or not. This task has been dealt with in several publications (Fu, 1999).

The following encoding is used: A = 1000, T = 0100, G = 0010, C = 0001; binding
site = 1, nonbinding site = 0.

An evolving fuzzy neural network EFuNN (Chapter 3) was trained in an online
mode for the parameter values: 132 inputs (33 × 4), 1 output, initial sensitivity
threshold Sthr = 0�9, error threshold Erthr = 0�1, initial learning rate lr = 0�1, m-of-
n value m = 3, evolved rule nodes Rn = 9 after the presentation of all 1600 examples;
aggregation of rule nodes is performed after every 50 examples – Nagg = 50.

Modelling and Knowledge Discovery in Bioinformatics 239

0 200 400 600 800 1000 1200 1400 1600
–0.5

0

0.5

1

D
es

ir
ed

 a
nd

 A
ct

ua
l

0 200 400 600 800 1000 1200 1400 1600
0

20

40

60

80

100

N
um

be
r

of
 r

ul
e

no
de

s

Fig. 8.3 Online learning of ribosome binding site data of two classes (Yes 1, and No 0). EFuNN has learned
very quickly to predict new data in an online learning mode. The upper figure gives the desired versus the
predicted one-step-ahead existence of RBS in an input vector of 33 bases (nucleotides). The lower figure shows
the number of rule nodes created during the learning process. Aggregation is applied after every 50 examples.

Figure 8.3 shows the process of online learning of EFuNN from the ribosome
binding site data. It took a very small number of examples for the EFuNN to
learn the input patterns of each of the two classes and predict properly the class
of the following example from the data stream. Nine rules are extracted from the
trained EFuNN that define the knowledge when, in a sequence of 33 bases, one
should expect that there would be a RBS, and when a RBS should not be expected.
Through aggregation, the number of the rules is kept comparatively small which
also improves the generalisation property of the system.

Using an evolving connectionist system allows us to add to the already evolved
system new RBS data in an online mode and to extract at any time of the system
operation refined rules.

8.2.4 RNA Intron/Exon Splice Junction Identification

Here a benchmark dataset, obtained from the machine learning database repos-
itory at the University of California, Irvine (Blake and Merz, 1998) is used. It
contains primate splice-junction gene sequences for the identification of splice site
boundaries within these sequences. As mentioned before, in eukaryotes the genes
that code for proteins are contained in coding regions (exons) that are separated
from noncoding regions (introns) of the pre-mRNA at definedboundaries, the

240 Evolving Connectionist Systems

so-called splice junction. The dataset consists of 3190 RNA sequences, each of
them 60 nucleotides long and classified as an exon–intron boundary (EI), an
intron–exon boundary (IE), or nonsplice site (N).

Several papers reported the use of MLP and RBF networks for the purpose of
the task (see, for example Fu (1999)).

Here, an EFuNN system is trained on the data. The EFuNN is trained with 1000
examples, randomly drawn from the splice dataset. The EFuNN has the following
parameter values: membership functions MF = 2; number of examples before
aggregation of the rule nodes Nagg = 1000; error threshold Ethr = 0�1.

When the system was tested on another set of 1000 examples, drawn randomly
from the rest of the dataset, 75.7% accuracy was achieved. The number of the
evolved rule nodes is 106. With the use of rule extraction thresholds T1 and T2
(see Chapter 3), a smaller number of rules were extracted, some of them shown
in Table 8.1. If on a certain position (out of 33) in the antecedent part of the rule
there is a ‘—’ rather than a base name, it means that it is not important for this
rule what base will be on this position.

When a new pre-mRNA sequence is submitted to the EFuNN classifier, it will
produce the probability that a splice junction is contained in this sequence.

Using an evolving connectionist system allows us to add new splice junction
site data to an already evolved system in an online mode, and to extract at any
time of the system operation refined splice boundary rules.

Table 8.1 Several rules extracted from a trained EFuNN model on a splice-
junction dataset.

Rule4: if —————————–GGTGAG—C———————
then [EI], receptive field = 0.221, max radius = 0.626, examples = 73/1000
Rule20: if —–G———C-G–G——-AGGTG-G-G-G–G—-G–GGG——–
then [EI], receptive field = 0.190, max radius = 0.627, examples = 34/1000
Rule25: if —–C–C-C-TCC-G–CTC-GT-C–GGTGAGTG–GGC—C—G-GG-C–CC-
then [EI], receptive field = 0.216, max radius = 0.628, examples = 26/1000
Rule2: if ——-CC——–C-TC-CC—CAGG———-G————-C—-
then [IE], receptive field = 0.223, max radius = 0.358, examples = 64/1000
Rule12: if ——————–C—C–CAGG—————————–
then [IE], receptive field = 0.318, max radius = 0.359, examples = 83/1000
Rule57: if ———-T—–T-C-T-T–T-CAGG—————-C-A——–T-
then [IE], receptive field = 0.242, max radius = 0.371, examples = 21/1000
Rule5: if ——A——–T——————————————–
then [N], receptive field = 0.266, max radius = 0.391, examples = 50/1000
Rule6: if ————————G–G–G–C-G——G——–G–GA—-
then [N], receptive field = 0.229, max radius = 0.400, examples = 23/1000
Rule9: if ——G——————————–G——–G—-T——
then [N], receptive field = 0.203, max radius = 0.389, examples = 27/1000
Rule10: if ——–A-A—–A————A——A—-A————-A—-
then [N], receptive field = 0.291, max radius = 0.397, examples = 36/1000
Rule14: if —–T—-T—G-TG—-TT-T———C—–C———–C——
then [N], receptive field = 0.223, max radius = 0.397, examples = 21/1000

Modelling and Knowledge Discovery in Bioinformatics 241

8.2.5 MicroRNA Data Analysis

RNA molecules are emerging as central ‘players’ controlling not only the
production of proteins from messenger RNAs, but also regulating many essential
gene expression and signalling pathways. Mouse cDNA sequencing project
FANTOM in Japan showed that noncoding RNAs constitute at least a third of
the total number of transcribed mammalian genes. In fact, about 98% of RNA
produced in the eukaryotic cell is noncoding, produced from introns of protein-
coding genes, non-protein-coding genes, and even from intergenic regions, and it
is now estimated that half of the transcripts in human cells are noncoding and
functional.

These noncoding transcripts are thus not junk, but could have many crucial
roles in the central dogma of molecular biology. The most recently discovered,
rapidly expanding group of noncoding RNAs is microRNAs, which are known
to have exploded in number during the emergence of vertebrates in evolution.
They are already known to function in lower eukaryotes in regulation of cell and
tissue development, cell growth and apoptosis, and many metabolic pathways,
with similar likely roles in vertebrates (Havukkala et al. 2005).

MicroRNAs are encoded by long precursor RNAs, commonly several hundred
basepairs long, which typically form foldback structures resembling a straight
hairpin with occasional bubbles and short branches. The length and the conser-
vation of these long transcribed RNAs make it possible by a sequence similarity
search method to discover and classify many phylogenetically related microRNAs
in the Arabidopsis genome (Havukkala et al., 2005). Such analysis has estab-
lished that most plant microRNA genes have evolved by inverted duplication of
target gene sequences. The mechanism of their evolution in mammals is less
clear.

Lack of conserved microRNA sequences or microRNA targets between animals
and plants suggests that plant microRNAs evolved after the split of the plant
lineage from mammalian precursor organisms. This means that the information
about plant microRNAs does not help to identify or classify most mammalian
microRNAs. Also, in mammalian genomes the foldback structures are much
shorter, down to only about 80 basepairs, making a sequence similarity search
a less effective method for finding and clustering remotely related microRNA
precursors.

Several sequence similarity and RNA-folding-based methods have been
developed to find novel microRNAs that include: Simple BLAST similarity search;
Screening by RNA-fold prediction algorithms (best known are Mfold and RNAfold)
to look for stem-loop structure candidates having a characteristically low deltaG
value indicating strong hybridization of the folded molecule, followed by further
screening by sequence conservation between genomes of related species; Careful
multiple alignment of many different sequences from closely related primate
species to find accurate conservation at single nucleotide resolution.

The problem with all these approaches is that they require extensive sequence
data and laborious sequence comparisons between many genomes as one key
filtering step. Also, findingspecies-specific, recently evolved microRNAs by these

242 Evolving Connectionist Systems

methods is difficult, as well as evaluating the phylogenetic distance of remotely
related genes which have diverged too much in sequence.

One tenet of this section is that the two-dimensional (2D) structure of
many microRNAs (and noncoding RNAs in general) can give additional infor-
mation which is useful for their discovery and classification, even with data
from within only one species. This is analogous to protein three-dimensional
(3D) structure analysis showing often functional and/or evolutionary similarities
between proteins that cannot easily be seen by sequence similarity methods alone
(Havukkala et al., 2006).

Prediction of RNA folding in 2D is more advanced, and reasonably accurate
algorithms are available which can simulate the putative most likely and
thermodynamically most stable structures of self-hybridizing RNA molecules.
Many such structures have been also verified by various experimental methods in
the laboratory, corroborating the general accuracy of these folding algorithms.

In Havukkala et al. (2005, 2006) we have approached the problem by utilising
visual information from images of computer-simulated 2D structures of macro-
molecules. The innovation is to use suitable artificial intelligence image analysis
methods, such as the Gabor filter on bitmap images of the 2D conformation. This
is in contrast to the traditional approach of using as a starting point various
extracted features, such as the location and size/length of loops/stems/branches
etc., which can comprise a preconceived hypothesis of the essential features of
the molecule conformation. The procedure is to take a sample of noncoding RNA
sequences, calculate their 2D thermodynamically most stable conformation, output
the image of the structure to bitmap images, and use a variety of rotation-invariant
image analysis methods to cluster and classify the structures without preconceived
hypotheses as to what kind of features might be important ones. Although one
may lose specific information about the exact location or length of loops/stems or
specific sequence motifs, the image analysis could reveal novel relevant features in
the image that may not be intuitively obvious to the human eye, e.g. fractal index
of the silhouette, ratio of stem/loop areas, handedness of asymmetric configura-
tions, etc.

8.3 Gene Expression Data Analysis, Rule Extraction,
and Disease Profiling1

8.3.1 Problem Definition

One of the contemporary directions while searching for efficient drugs for many
terminal illnesses, such as cancer or HIV, is the creation of gene profiles of these

1The gene expression profiling methodology described in this section constitutes intel-
lectual property of the Pacific Edge Biotechnology Ltd. (PEBL) (http://www.peblnz.com).
Prior permission from PEBL is needed for any commercial applications of this methodology.
The methodology is protected as a PCT patent (Kasabov, 2001b).

Modelling and Knowledge Discovery in Bioinformatics 243

diseases and subsequently finding targets for treatment through gene expression
regulation. A gene profile is a pattern of expression of a number of genes that is
typical for all, or for some of the known samples of a particular disease. A disease
profile would look like:

IF (gene g1 is highly expressed) AND (gene g37 is low expressed) AND (gene
134 is very highly expressed) THEN most probably this is cancer type C (123 out
of available 130 samples have this profile).

Having such profiles for a particular disease makes it possible to set early
diagnostic testing, so a sample can be taken from a patient, the data related to
the sample processed, and a profile obtained. This profile can be matched against
existing gene profiles and based on similarity, it can be predicted with certain
probability if the patient is in an early phase of a disease or he or she is at risk of
developing the disease in the future.

A methodology of using DNA or RNA samples, labelled with known diseases,
that consists of training an evolving system and extracting rules, that are presented
as disease profiles, is illustrated schematically in Fig. 8.4. Each profile is a rule
that is extracted from a trained ECOS, which on the figure is visualised through
colours: the higher the level of a gene expression, the brighter the colour. Five
profiles are visualised in Fig. 8.4. The first three represent a group of samples of
class 1 (disease), with the second two representing class two (normal case). Each
column in the condition part of the rules (profiles) represents the expression of
one gene out of the 100 relevant genes used in this example.

Microarray equipment is used widely at present to evaluate the level of gene
expression in a tissue or in a living cell (Schena, 2000). Each point (pixel, cell) in a
microarray represents the level of expression of a single gene. Five principal steps
in the microarray technology are shown in Fig. 8.5. They are: tissue collection RNA
extraction, microarray gene expression recording, scanning, and image processing,
and data analysis.

The recent advent of DNA microarray and gene chip technologies means
that it is now possible to simultaneously interrogate thousands of genes in
tumours. The potential applications of this technology are numerousand include

inputs
output

rule
nodes

Fig. 8.4 A schematic representation of the idea of using evolving connectionist systems to learn gene profiles
of diseases from DNA/RNA data.

244 Evolving Connectionist Systems

Fig. 8.5 Principal steps in a gene expression microarray experiment with a consecutive data analysis and profile
discovery.

identifying markers for classification, diagnosis, disease outcome prediction, thera-
peutic responsiveness, and target identification. Microarray analysis might not
identify unique markers (e.g. a single gene) of clinical utility for a disease because
of the heterogeneity of the disease, but a prediction of the biological state of
disease is likely to be more sensitive by identifying clusters of gene expressions
(profiles; Kasabov (2001a,b)).

For example, gene expression clustering has been used to distinguish
normal colon samples from tumours from within a 6500 gene set, although
clustering according to clinical parameters has not been undertaken (Alon et al.,
1999). Although distinction between normal and tumour tissue can be easily made
using microscopy, this analysis represented one of the early attempts to classify
biological samples through gene expression clustering. The above dataset is used
in this section to extract profiles of colon cancer and normal tissue through using
an evolving fuzzy neural network EFuNN (Chapter 3).

Another example of profiling developed in this chapter is for the distinction
between two subtypes of leukaemia, namely AML and ALL (Golub et al.,
1999).

NN have already been used to create classification systems based on gene
expression data. For example, Khan et al. (2001) used MLP NNs and achieved
a successful classification of 93% of Ewing’s sarcomas, 96% of rhabdomyo-
sarcomas, and 100% of neuroblastomas. From within a set of 6567 genes,
96 genes were used as variables in the classification system. Whether these
results would be different using different classification methods needs further
exploration.

8.3.2 A Gene Expression Profiling Methodology

A comprehensive methodology for profiling of gene expression data from
microarrays is described in Futschik et al. (2002, 2003a,b). It consists of the
following phases.

Modelling and Knowledge Discovery in Bioinformatics 245

1. Microarray data preprocessing. This phase aims at eliminating the low expressed
genes, or genes that are not expressed sufficiently across the classes(e.g.
controlled versus tumour samples, or metastatic versus nonmetastatic tumours).
Very often log transformation is applied in order to reduce the range of gene
expression data. An example of how this transformation ‘squeezes’ the gene
expression values plotted in the 2D principal components, is given in Fig. 8.6.
There are only two samples used (two cell lines) and only 150 genes out of the
4000 on the microarray, that distinguish these samples.

2. Selecting a set of significant differentially expressed genes across the classes.
Usually the t-test is applied at this stage with an appropriate threshold used
(Metcalfe, 1994). The t-test calculates in principle the difference between the
mean expression values for each gene g for each class (e.g. two classes: class 1,
normal and class two, tumour)

t = ��1 −�2�/�12 (8.1)

where �1 and �2 are the mean expression values of gene g for class 1 and class
2 respectively; �12 is the variance.

3. Finding subsets of (a) underexpressed genes and (b) overexpressed genes from
the selected ones in the previous step. Statistical analysis of these subsets is
performed.

4. Clustering of the gene sets from phase 3 that would reveal preliminary
profiles of jointly overexpressed/underexpressed genes across the classes. An
example of hierarchical clustering of 12 microarray vectors (samples), each
containing the expression of 50 genes after phases 1 to 3 were applied
on the initial 4000 gene expression data from the microarrays, is given in
Fig. 8.7. Figure 8.7a plots the samples in a 2D Sammon projection space of
the 50D gene expression space. Figure 8.7b presents graphically the similarity
between the samples (columns), based on the 50 selected genes, and the
similarity between the genes (rows) based on their expression in the 12 samples
(see chapter 2).

0 1 2 3 4 5 6 7
× 104

×104

0

1

2

3

4

5

6

7

Intensities Channel 1

In
te

ns
iti

es
 C

ha
nn

el
 2

10 11 12 13 14 15 16
9

10

11

12

13

14

15

16

Log2 Intensities Channel 1

L
og

2
In

te
ns

iti
es

 C
ha

nn
el

 2

Fig. 8.6 Gene expression data: (a) before log transformation; (b) after log transformation.

246 Evolving Connectionist Systems

Fig. 8.7 (a) Sammon’s projection of 50D gene expression space of 12 gene expression vectors (samples, taken
from 12 tissues); (b) hierarchical clustering of these data. The rows are labelled by the gene names and the
columns represent different samples. The lines link similar items (similarity is measured as correlation) in a
hierarchical fashion.

Modelling and Knowledge Discovery in Bioinformatics 247

Gene expression

D
eg

re
e

of
 m

em
be

rs
hi

p

g g
** *

MaxMin

Low

Medium

High

0

1

0.8

0.6

0.4

0.2

Fig. 8.8 Gene expression values are fuzzified with the use of three triangular membership functions (MF)
(Futschik et al., 2002).

5. Building a classification model and extracting rules that define the profiles for
each class. The rules would represent the fine grades of the common expression
level of groups of genes. Through using thresholds, smaller or larger groups of
genes can be selected from the profile. For a better rule representation, gene
expression values can be fuzzified as it is illustrated in Fig. 8.8.

6. Further training of the model on new data and updating the profiles. With
the arrival of new labelled data (samples) the model needs to be updated, e.g.
trained on additional data, and possibly modified rules (profiles) extracted.

Two datasets are used here to illustrate the above methodology that explores
evolving systems for microarray data analysis.

8.3.3 Case Study 1: Gene Profiling of Two Classes of Leukaemia
with the Use of EFuNN

A dataset of 72 classification examples for leukaemia cancer disease is used, that
consists of two classes and a large input space, the expression values of 6817
genes monitored by Affymetrix arrays (Golub et al., 1999). The two types of
leukaemia are acute myeloid leukaemia (AML) and acute lymphoblastic leukaemia
(ALL). The latter one can be subdivided further into T-cell and B-cell lineage
classes. Golub et al. split the dataset into 38 cases (27 ALL, 11 AML) for training
and 34 cases (20 ALL, 14 AML) for validation of a classifier system. These
two sets came from different laboratories. The test set shows a higher hetero-
geneity with regard to tissue and age of patients making any classification more
difficult.

The task is: (1) to find a set of genes distinguishing ALL and AML; (2) to
construct a classifier based on these data; and (3) to find a gene profile of each of
the classes.

After having applied points 1 and 2 from the methodology above, 100 genes are
selected.

A preliminary analysis on the separability of the two classes can be done through
plotting the 72 samples in the 2D principal component analysis space.PCA consists

248 Evolving Connectionist Systems

of a linear transformation from the original set of variables (100 genes) to a
new (smaller, 2D) set of orthogonal variables (principal components) so that the
variance of the data is maximal and ordered according to the principal components;
see Fig. 8.9a.

Several EFuNNs are evolved through the N-cross-validation technique (leave-
one-out method) on the 72 data examples. The EFuNN parameters as well as the
training and test error are given in Table 8.2.

In the case of data being made available continuously over time and fast
adaptation on the new data needed to improve the model performance, online
modelling techniques would be more appropriate, so that any new labelled data

(b)

(a)

Fig. 8.9 (a) The first two principal components of the leukaemia 100 genes selected after a t-test is applied:
� AML, + ALL (Futschik et al., 2002); (b) some of the rules extracted from an EFuNN trained on the leukaemia
data and visualised as profile patterns (Futschik et al., 2002).

Modelling and Knowledge Discovery in Bioinformatics 249

Table 8.2 The parameter values and error results of N -cross-validation EFuNN models for the leukaemia
and colon cancer data (Futschik et al., 2002).

Data/Model Errthr Rmax N agg Rule Nodes Classification
Accuracy –
Training Data

Classification
Accuracy – Test
Data

Leukaemia-
EFuNN

0.9 0.3 20 6.1 97.4 95.8

Leukaemia-
EFunN

0.9 0.5 20 2.0 95.2 97.2

Colon cancer-
EFuNN

0.9 1.0 40 2.3 88.8 90.3

Colon cancer-
EFuNN

0.9 1.0 40 2.3 88.8 91.9

will be added to the EFuNN and the EFuNN will be used to predict the class of
any new unlabelled data.

Different EFuNN were evolved with the use of different sets of genes as input
variables. The question of which is the optimum number of genes for a particular
task is a difficult one to answer. Table 8.3 shows two of the extracted rules after
all the examples, each of them having only 11 genes, are learned by the EFuNN.
The rules are ‘local’ and each of them has the meaning of the dominant rule in a
particular subcluster of each class from the input space. Each rule covers a cluster
of samples that belong to a certain class. These samples are similar to a degree
that is defined as the radius of the receptive field of the rule node representing
the cluster. For example, Rule 6 from Table 8.3 shows that 12 samples of class 2
(AML) are similar in terms of having genes g2 and g4 overexpressed, and at the
same time genes g8 and g9 are underexpressed.

One class may be represented by several rules, profiles, each of them covering
a subgroup of similar samples. This can lead to a new investigation on why the
subgroups are formed and why they have different profiles (rules), even being part
of the same class.

The extracted rules for each class comprise a profile of this class. One way
of visually representing these profiles is illustrated in Fig. 8.9b, where rules were
extracted from a trained EFuNN with 100 genes.

Table 8.3 Some of the rules extracted from the evolved EFuNN.

Rule 1: if [g1] is (2 0.9) and [g3] is (2 0.9) and [g5] is (2 0.7) and [g6] is (2 0.7) and [g8] is (1 0.8) and
[g9] is (2 0.7), receptive field = 0.109 (radius of the cluster), then Class 1, accommodated training
examples = 27/72.
- - -
Rule 6: if [g2] is (2 0.8) and [g4] is (2 0.874) and [g8] is (1 0.9) and [g9] is (1 0.7), receptive field = 0.100,
then Class 2, accommodated training examples =12/72.
� � � � � � � � � � � �
Denotation: [g1] is (2 0.9) means that the membership degree to which gene 1 expression value belongs to
the membership function “High” is 0.9. Alternatively 1 means membership function “Low”. There is a
membership degree threshold of 0.7 used and values less than this threshold are not shown.

250 Evolving Connectionist Systems

8.3.4 Case Study 2: Gene Profiling of Colon Cancer

The second dataset is two-class gene expression data, the classes being ‘colon
cancer’ and ‘normal’ (see Alon et al. (1999)). The data were collected from 40
tumour and 22 normal colon tissues sampled with the use of the Affymetrix
oligonucleotide microarrays. The expression of more than 6500 genes and ESTs is
collected for each sample.

After the preprocessing, the normalisation, the log-transformation, and the t-test
analysis, only 50 genes are selected for the creation of the classification model
and for the knowledge discovery procedure. Figure 8.10 shows the projection
of the 62 samples from the 50D gene expression space into the 2D PCA space,
and also the ordered gene-samples hierarchical clustering diagram according to
a similarity measured through the Pearson correlation coefficients (see Futschik
et al. (2002, 2003)).

Through N-cross-validation, 62 EfuNNs are evolved on 61 data examples each
and tested on the left-out example (the leave-one-out method for cross-validation).
The results are shown in Table 8.2. Subgroups of samples are associated with rule
nodes, as shown in Fig. 8.10 for the rule nodes 2, 13, and 14. Three membership
functions (MF) are used in the EFuNN models, representing Low, Medium, and
High gene expression values respectively. Figure 8.11 shows the degree to which
each input variable, a gene expression value (from the 50 genes selected) belongs
to each of the above MF for rule node 2.

Table 8.4 shows one of the extracted rules after all the examples are learned by
the EFuNN. The rules are ‘local’ and each of them has its meaning for a particular
cluster of the input space. A very preliminary analysis of the rules points to one
gene that is highly expressed in a colon cancer tissue (MCM3 – H09351, which gene
is already known that it is involved in DNA replication) and several genes that
are suppressed in the cancer samples. These are: Caveolin (Z18951), a structural
membrane protein involved in the regulation of signalling pathways and also a
putative tumour suppressor; and the enzymes carbonic anhydrase I (R93176) and
II (J03037), that have already been shown in the literature to be correlated with
the aggressiveness of colorectal cancer.

Figure 8.12 visualises some of the rules extracted from an EFuNN model trained
on 62 samples from the colon cancer data in the format of profiles.

Fig. 8.10 The PCA projection of the 62 samples of colon cancer/normal tissue from 50D gene expression space
and the similarity matrix genes/samples calculated based on the Pearson correlation coefficients (Futschik et al.,
2002).

Modelling and Knowledge Discovery in Bioinformatics 251

0 5 10 15

MF: High

20 25 30 35 40 45 50
0

0.5

1

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

0 5 10 15 20 25 30 35 40 45 50
0

0.5

Im
p
ro

ta
n
ce

 v
al

u
e

1

MF: Medium

MF: Low

Gene

Fig. 8.11 Distribution of fuzzy membership degrees of genes 1 to 50 for rule node 2 from Fig. 8.10 (colon
cancer data; Futschik et al., 2002).

Table 8.4 One of the extracted rules that reveal some conditions for a colon cancer against
normal tissue (Futschik et al., 2002).

Rule for colon cancer:

IF H57136 is Low (1.0) AND H09351 is High (0.92) AND T46924 is Low (0.9) AND
Z18951 is Low (0.97) AND R695523 is Low (0.98) AND J03037 is Low (0.98) AND R93176
is Low (0.97) AND H54425 is Low (0.96) AND T55741 is Low (0.99)

THEN The sample comes from a colon cancer tissue (certainty of 1.0)

8.3.5 How to Choose the Preprocessing Techniques and the Number
of Genes for the Profiles

Preprocessing and normalisation affect the performance of the models as illus-
trated in Fig. 8.13 on the two benchmark data used here. 100 genes are used in the
N-cross-validation procedure with the following parameter values for the EFuNN
models: E = 0�9; Rmax = 0�3; Nagg = 20.

The number of selected genes is another parameter that affects the performance
of the classification system. Figure 8.14 shows the N-cross-validation test accuracy
of EFuNN models for both the leukaemia and the colon cancer datasets, when
the following parameter values are used: E = 0�1; Rmax = 0�3; Nagg = 20. For the

252 Evolving Connectionist Systems

Fig. 8.12 Visualising some the rules (profiles) extracted from an EFuNN model evolved from the colon cancer
data (Futschik et al., 2002).

leukaemia dataset the best classification result is achieved for 100 genes, whereas
for the colon cancer dataset this number is 300.

8.3.6 SVM and SVM Trees for Gene Expression Classification

In the area of bioinformatics, the identification of gene subsets responsible for
classifying available samples to two or more classes (such as ‘malignant’ or
‘benign’) is an important task. Most current classifiers are sensitive to disease-
marker gene selection. Here we use SVM and SVM-tree (SVMT) on different tasks
of the same problem. Whereas the SVM creates a global model and Transductive
SVM (TSVM) creates a local model for each sample, the SVMT creates a global
model and performs classification in many local subspaces instead in the whole
data space as typical classifiers do.

Here we use four different cancer datasets: lymphoma (Ship et al., 2002),
leukaemia (Golub et al., 1999), colon (Alon et al., 1999), and leukaemia cell line
time-series data (Dimitrov et al., 2004). The lymphoma dataset is a collection of
gene expression measurements from 77 malignant lymphocyte samples reported
by Shipp et al (2002). It contains 58 samples of diffused large B-cell lymphoma
(DLBCL) and 19 samples of follicular lymphoma (FL), where DLBCL samples are
divided into two groups: those with cured disease (n = 32) and those with fatal or
refractory disease (n = 26). The lymphoma data containing 6817 genes is available
at http: //www.genome.wi.mit/MPR/Lymphoma.

The leukaemia data are a collection of gene expression measurements from
72 leukaemia (composed of 62 bone marrow and 10 peripheral blood) samples
reported by Golub et al. (1999). They contain an initial training set composed

Modelling and Knowledge Discovery in Bioinformatics 253

Accuracy (%)

C
olon C

ancer
0 20 40 60 80

100

L
eukem

ia

Scaled + logged

Scaled data

Scaled data

Raw data

Raw data

Scaled +
logged data

Scaled +
logged data

+ filtered data

Scaled + logged
+ filtered data

Fig. 8.13 Preprocessing affects the performance of the modelling EFuNN system (Futschik et al., 2002).

of 27 samples of acute lymphoblastic leukaemia (ALL) and 11 samples of acute
myeloblastic leukaemia (AML), and an independent test set composed of 20 ALL
and 14 AML samples. The gene expression measurements were taken from high-
density oligonucleotide microarrays containing 7129 probes for 6817 human genes.
These data sets are available at http://www.genome wi.mit.edu/MPR.

The second leukaemia data are a collection of gene expression observations of
two cell lines U937 (MINUS, a cancer cell line that is positively affected by retinoic
acid and becomes a normal cell after a time interval of 48 hours, and PLUS cell
line, that is cancerous and not affected by the drug (Dimitrov et al., 2004). Each
of the two time series contains the expression value of 12,000 genes at four time
points: CTRL, 6 hours, 24 hours, and 48 hours. We can view this problem also as
a classification problem where we have four variables (the time points) and 24,000
examples (the gene expression of a gene over the four time points) classified in
two classes, MINUS and PLUS.

254 Evolving Connectionist Systems

101001000
20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

Number of genes

Colon
Leukemia

Fig. 8.14 Dependence of the accuracy of N -cross-variation testing on the number of genes in the EFuNN
model for both leukaemia data and colon cancer data (Futschik et al., 2002).

The colon dataset is a collection of 62 expression measurements from colon
biopsy samples reported by Alon et al. (1999). It contains 22 normal and 40
colon cancer samples. The colon data having 2000 genes are available at http://
microaaray.princeton.edu/oncology.

On the above gene expression cancer datasets, we applied the following
methodology.

Step 1. Define target classes.
Step 2. Identify a gene subset (variable selection). We employed the multi-
objective GA (NSGA-II), where three objective functions are used. The first
objective is to minimize the size of the gene subset in the classifier. The
second objective is to minimize the number of mismatches in the training data
samples calculated using the leave-one-out cross-validation procedure. The third
objective is to minimize the number of mismatches in the test samples.
Step 3. Filter and normalise data. We eliminate genes with not much variation
in the expression values for the two classes to ensure a differentiation of the
classes. We normalize data by evaluating the difference of the maximum and
minimum gene expression values for every gene, and by measuring its standard
deviation.
Step 4. Build a classifier. For each variable set and defined classes we build
and test classifiers in a cross-validation mode (leave-one-out) by removing one
sample and then using the rest as a training set. Several models are built using
different numbers of marker genes and the final chosen model is the one that
minimizes the total cross-validation error.
Step 5. Evaluate results. We evaluate prediction results and compute confusion
matrices. For the purpose of comparison with past studies, we compare
the proposed classifier algorithm with the K-NN model and an inductive
global SVM.

Modelling and Knowledge Discovery in Bioinformatics 255

Figure 8.15 shows the created SVMT for the lymphoma dataset (Pand et al.,
2006; Pang and Kasabov, 2004). Each internal node of the tree identifies an SVM
classifier, which is represented as an ellipse with a number as its identity.

When the parent node is labeled i, its two children nodes are identified as 2i
and 2i +1, respectively. We also represent the terminal node as a circle or a filled
circle, which denotes positive or negative class, respectively.

Fig. 8.15 SVMT for the classification of DLBCL versus FL (first class represented as dark nodes as leafs) based
on the data from (Ship et al., 2002).

256 Evolving Connectionist Systems

Table 8.5 Results of applying SVM, TSVM, and SVMT on the four gene expression classification problems.

With/Without Marker Gene Selection K -NN
(%)

SVM
(%)

TSVM
(%)

SVM Tree
(%)

Lymphoma DLBCL vs. FL; 6432 genes, 77 samples 53.2 55.8 57.1 77.9
DLBCL vs. FL; 30 genes, 77 samples 90.9 92.2 93.5 92.2
cured vs. fatal 6432 genes, 58 samples 51.7 53.3 55.1 72.4
cured vs. fatal; 13 genes, 58 samples 70.7 72.4 79.3 70.7

Leukaemia ALL vs. AML; 7219 genes, 72 samples 52.8 55.6 52.8 78.3
ALL vs. AML; 3859 genes, 72 samples 93.1 94.4 95.8 100
ALL vs. AML; 27 genes, 72 samples 91.6 98.6 98.6 90.3

L. cell line Min vs. Plus; 4 variables; 24,000 samples 52.5 53.3 50.0 81.3

Colon Normal vs. Cancer; 2000 genes, 62 samples 75.8 79.0 72.6 80.7
Normal vs. Cancer; 12 genes, 62 samples 98.4 100 100 98.4

From the results in Table 8.5 we can compare inductive SVM, transductive SVM
(TSVM), and the SVM tree (SVMT) on the case study datasets above. The TSVM
performs at least as well as the inductive SVM on a small or a medium variable set
(several genes or several hundred genes). A TSVM model can be generated on a
smaller number of variables (genes) evaluated on the selected small dataset from
a local problem space for a particular new sample (e.g. a new patient’s record).
The TSVM allows for an individual model generation and therefore is promising
as a technique for personal medicine.

The SVMT performs best on a large variable space (e.g. thousands of genes,
sometimes with little or no preprocessing and no pregene selection). This feature
of the SVMT allows for a microarray data collection from a tissue sample and an
immediate analysis without the analysis being biased by gene preselection.

8.3.7 How to Choose the Model for Gene Profiling and Classification
Tasks – Global, Local, or Personalised Models

The gene profiling task may require that the model meets the following requirements.

1. The model can be continuously trained on new data.
2. The model is knowledge-based, where knowledge in the form of profiles is

extracted.
3. The model gives an evaluation for the validity of the profiles.

The two main reasoning approaches – inductive and transductive – are used here to
develop global, local, and personalised models on the same data in order to compare
different approaches on two main criteria: accuracy of the model and type of patterns
discovered from data. The following classification techniques are used: multiple
linear regression (MLR), SVM, ECF, WKNN, and WWKNN (see chapters 1,2,3).

Each of the models is validated through the same leave-one-out cross-validation
method (Vapnik, 1998). The accuracy of the different models is presented in
Table 8.6. It can be seen that the transductive reasoning and personalised modelling

Ta
bl

e
8.

6
Ex

pe
rim

en
ta

l
re

su
lts

in
te

rm
s

of
m

od
el

ac
cu

ra
cy

te
st

ed
th

ro
ug

h
le

av
e-

on
e-

ou
t

cr
os

s-
va

lid
at

io
n

m
et

ho
d

w
he

n
us

in
g

di
ffe

re
nt

m
od

el
lin

g
te

ch
ni

qu
es

on
th

e
DL

BC
L

Ly
m

ph
om

a
da

ta
fo

r
cla

ss
ifi

ca
tio

n
of

ne
w

sa
m

pl
es

in
to

cla
ss

1
–

su
rv

iva
l,

or
cla

ss
2

–
fa

ta
lo

ut
co

m
e

of
th

e
di

se
as

e
w

ith
in

fiv
e

ye
ar

s
tim

e
(S

hi
pp

et
al

.,
20

02
).

Th
e

ta
bl

e
sh

ow
s

th
e

ov
er

al
lm

od
el

cla
ss

ifi
ca

tio
n

ac
cu

ra
cy

in
%

an
d

th
e

sp
ec

ifi
cit

y
an

d
se

ns
iti

vit
y

va
lu

es
(a

cc
ur

ac
y

fo
r

cla
ss

1
an

d
cla

ss
2,

re
sp

ec
tiv

el
y)

in
br

ac
ke

ts
.

M
od

el/
Fe

at
ur

es
In

du
ct

Gl
ob

al
M

LR
[%

]

In
du

ct
Gl

ob
al

SV
M

[%
]

In
du

ct
Lo

ca
l

EC
F

[%
]

Tr
an

s
W

KN
N

K
=

8
[%

],
P tt

hr
=

..5

Tr
an

s
W

KN
N

K
=

26
[%

]
P th

r=
0.

5

Tr
an

s
W

W
-

KN
N

K=
16

Tr
an

s
M

LR
K

=
8

[%
]

Tr
an

s
M

LR
k

=
26

[%
]

Tr
an

s
SV

M
K

=
8

[%
]

Tr
an

s
SV

M
k

=
26

[%
]

Tr
an

s
EC

F
K

=
8

[%
]

Tr
an

s
EC

F
k

=
26

[%
]

IP
I(

on
e

cli
ni

ca
l

va
ria

bl
e)

73 (8
7,

58
)

73 (8
7,

58
)

46 (0
,1

00
)

50 (8
7,

8)
73 (8

7,
56

)
68 (6

3,
73

)
50 (8

7,
8)

73 (8
7,

58
)

46 (1
00

,0
)

73 (8
7,

58
)

61 (6
3,

58
)

46 (0
,1

00
)

11
ge

ne
s

79 (9
1,

65
)

83 (8
8,

78
)

86 (8
8,

84
)

74 (9
1,

54
)

73 (9
3,

47
)

81 (8
1,

81
)

66 (6
6,

65
)

78 (8
1,

73
)

76 (9
1,

58
)

78 (9
1,

62
)

78 (8
1,

73
)

83 (9
1,

73
)

IP
I+

11
ge

ne
s

82 (8
3,

81
)

86 (9
0,

81
)

88 (
83

,
92

)
77 (9

0,
62

)
Pt

hr
=

.4
5

82
%

(9
7,

65
)

80 (8
0,

81
)

57 (6
0,

54
)

79 (8
0,

77
)

77 (9
3,

58
)

84 (9
3,

73
)

75 (8
3,

65
)

77 (8
7,

65
)

258 Evolving Connectionist Systems

is sensitive to the selection of the number of the nearest neighbours K . Its
optimization is discussed in the next section.

The transductive, pezvnalised WWKNN produces a balanced accuracy of 80 and
81% for each of the two classes (balanced sensitivity and specificity values) along
with an individual ranking of the importance of the variables for each individual
sample. Having this knowledge, a personalised treatment can be attempted that
targets the important genes and clinical variables for each patient.

Fig. 8.16 Cluster–based, local patterns (rules) extracted from a trained ECF model from chapter3 (inductive,
local training) on 11 gene expression data and clinical data of the lymphoma outcome prediction problem (from
M.Slipp et al., 2002). The first variable (first column) is the clinical variable IPI. The accuracy of the model
measured through the leave-one-out cross-validation method is 88% (83% class one and 92% class two). The
figure shows: (a) 15 local profiles of class 1 (survive), threshold 0.3; (b) 9 local profiles of class 2 (fatal outcome),
threshold 0.3; (c) global class profiles (rules) are derived through averaging the variable values (genes or IPI)
across all local class profiles from Fig. 8.3 and ignoring low values (below a threshold, e.g. 0.1 as an absolute
value). Global profiles for class 1 and class 2 may not be very informative as they may not manifest any variable
that is significantly highly expressed in all clusters of any of the two classes if the different class samples are
equally scattered in the whole problem space.

Modelling and Knowledge Discovery in Bioinformatics 259

The best accuracy is manifested by the local ECF model, trained on a combined
feature vector of 11 gene expression variables and the clinical variable IPI. Its
prognostic accuracy is 88% (83% for class 1, cured and 92% for class 2, fatal).
This compares favourably with the 75% accuracy of the SVM model used in Shipp
et al. (2002).

In addition, local rules that represent cluster gene profiles of the survival versus
the fatal group of patients were extracted as shown graphically in Fig. 8.16. These
profiles show that there is no single variable that clearly discriminates the two
classes; it is a combination of the variables that discriminates different subgroups
of samples within a class and between classes.

The local profiles can be aggregated into global class profiles through averaging
the variable values across all local profiles that represent one class; see Fig. 8.16c.
Global profiles may not be very informative if data samples are dispersed in the
problem space and each class of samples is spread out in the space, but they show
the big picture, the common trends across the population of samples.

As each of the global, local, and personalised profiles contains a different level
of information, integrating them through the integration of global, local, and
personalised models would facilitate a better understanding and better accuracy
of the prognosis (chapter 7).

When GA is used to optimise the feature set and the ECF model parameters,
a significant improvement of the accuracy is achieved with the use of a smaller
number of input variables (features) as a GA optimised ECF model and a feature
set on the DLBCL Lymphoma data is shown in Chapter 6, Fig. 6.10. Twenty
individual models are used in a population and run for 20 generations with a
fitness function, model test accuracy, where the cross-validation method used is
fivefold-cross-validation done on every model within a population with 70% of
randomly selected data for training and 30% for testing. The same data are used
to test all models in a population. The best performing models are used to create a
new generation of 20 individual models, etc. The accuracy of the optimal model is
now 90.66%, which is higher than the best model from Table 8.6 (no optimization
is used there). The best model does not use features 5, 8, and 12 (genes 4, 7, and 11).

8.4 Clustering of Time-Course Gene Expression Data

8.4.1 Problem Definition

Each gene in a cell may express differently over time. And this makes the gene
expression analysis based on static data (one shot) not a very reliable mechanism.
Measuring the expression rate of each gene over time gives the gene a temporal
profile of its expression level. Genes can be grouped together according to their
similarity of temporal expression profiles.

This is illustrated here with case study data. For a demonstration of the appli-
cability of our method, we used yeast gene expression data that are available as a
public database. We analysed the gene expression during the mitotic cell cycle of
different synchronised cultures as reported by Cho et al. (1998) and by Spellman
et al. (1998). The datasets consisted of expression profiles for over 6100 ORFs.

260 Evolving Connectionist Systems

In this study we did not reduce the original dataset by applying a filter in the
form of a minimum variance. This leads to a higher number of clusters of weakly
cell-regulated genes, however, it diminished the possibility of missing co-regulated
genes during the clustering process.

For the search for upstream regulatory sequences we used Hughes’ compiled
set of upstream regions for the open reading frames (ORFs) in yeast (Church lab:
http://atlas.med.harvard.edu/).

One of the main purposes for cluster analysis of time-course gene expression
data is to infer the function of novel genes by grouping them with genes of well-
known functionality. This is based on the observation that genes which show
similar activity patterns over time (co-expressed genes) are often functionally
related and are controlled by the same mechanisms of regulation (co-regulated
genes). The gene clusters generated by cluster analysis often relate to certain
functions, e.g. DNA replication, or protein synthesis. If a novel gene of unknown
function falls into such a cluster, it is likely that this gene serves the same function
as the other members of this cluster. This ’guilt-by-association’ method makes it
possible to assign functions to a large number of novel genes by finding groups
of co-expressed genes across a microarray experiment (Derisi et al., 1997).

Different clustering algorithms have been applied to the analysis of time-course
gene expression data: k-means, SOM, and hierarchical clustering, to name just
a few (Derisi, 1997. They all assign genes to clusters based on the similarity of
their activity patterns. Genes with similar activity patterns should be grouped
together, whereas genes with different activation patterns should be placed in
distinct clusters. The cluster methods used thus far have been restricted to a one-
to-one mapping: one gene belongs to exactly one cluster. Although this principle
seems reasonable in many fields of cluster analysis, it might be too limited for the
study of microarray time-course gene expression data. Genes can participate in
different genetic networks and are frequently coordinated by a variety of regulatory
mechanisms. For the analysis of microarray data, we may therefore expect that
single genes can belong to several clusters.

8.4.2 Fuzzy Clustering of Time Course Gene Expression Data

Several researchers have noted that genes were frequently highly correlated with
multiple classes and that the definition of clear borders between gene expression
clusters often seemed arbitrary (Chu et al., 1998). This is a strong motivation to
use fuzzy clustering in order to assign single objects to several clusters.

A second reason for applying fuzzy clustering is the large noise component in
microarray data due to biological and experimental factors. The activity of genes
can show large variations under minor changes of the experimental conditions.
Numerous steps in the experimental procedure contribute to additional noise
and bias. A usual procedure to reduce the noise in microarray data is setting
a threshold for a minimum variance of the abundance of a gene. Genes below
this threshold are excluded from further analysis. However, the exact value of the
threshold remains arbitrary due to the lack of an established error model and the
use of filtering as preprocessing.

Modelling and Knowledge Discovery in Bioinformatics 261

Hence we usually have little information about the data structure in advance,
a crucial step in cluster analysis is selection of the number of clusters. Finding
the ’correct’ number of clusters leads to the issue of cluster validity. This has
turned out to be a rather difficult problem, as it depends on the definition of
a cluster. Without prior information, a common method is the comparison of
partitions resulting from different numbers of clusters. For assessing the validity
of the partitions, several cluster validity functionals have been introduced (Pal and
Bezdek, 1995). These functionals should reach an optimum if the correct number
of clusters is chosen. When using evolving clustering techniques the number of
the clusters does not need to be defined a priori.

Two fuzzy clustering techniques were applied: the batch mode fuzzy C-means
clustering (FCM) and an evolving clustering through evolving self-organised maps
(ESOM; see Chapter 2).

In the FCM clustering experiment (for more details see Futschik and Kasabov,
(2002)) the fuzzification parameter m (Pal and Bezdek, 1995) turned out to be
an important parameter for the cluster analysis. For the randomised dataset,
FCM clustering formed clusters only if m was chosen smaller than 1.15. Higher
values of m led to uniform membership values in the partition matrix. This can
be regarded as an advantage of FCM over exat clustering, which always forms
clusters independently of the existence of any structure in the data. An appropriate
choice for a lower threshold for m can therefore be set if no cluster artefacts
are formed in randomised data. An upper threshold for m is reached if FCM
does not indicate any cluster in the original data. This threshold depends mainly
on the compactness of the clusters. The cluster analysis with FCM showed that

Fig. 8.17 Using evolving self-organised maps (ESOM; see Chapter 2) to cluster temporal profiles of yeast gene
expression data (Futschik et al., 1999).

262 Evolving Connectionist Systems

hyperspherical distributions are more stable for increasing m than hyperellipsoid
distributions. This may be expected because FCM clustering with Euclidean norm
favours spherical clusters.

In another experiment, an evolving self-organising map ESOM was evolved from
the yeast gene temporal profiles used as input vectors. The number of clusters did
not need to be specified in advance (Fig. 8.17). It can be seen from Fig. 8.17 that
clusters 72 and 70 are represented on the ESOM as neighbouring nodes. The ESOM
in the figure is plotted as a 2D PCA projection. Cluster 72 has 43 members (genes,
that have similar temporal profiles), cluster 70 has 61 members, and cluster 5 has
only 3 genes as cluster members.

New cluster vectors will be created in an online mode if the distance between
existing clusters and the new data vectors is above a chosen threshold.

8.5 Protein Structure Prediction

8.5.1 Problem Definition

Proteins provide the majority of the structural and functional components of a
cell. The area of molecular biology that deals with all aspects of proteins is called
proteomics. Thus far about 30,000 proteins have been identified and labelled, but this
is considered to be a small part of the total set of proteins that keep our cells alive.

The mRNA is translated by ribosomes into proteins. A protein is a sequence of
amino acids, each of them defined by a group of three nucleotides (codons). There
are 20 amino acids all together, denoted by letters (A,C-H,I,K-N,P-T,V,W,Y). The
codons of each of the amino acids are given in Table 8.7, so that the first column
represents the first base in the triplet, the top row represents the second base, and
the last column represents the last base.

The length of a protein in number of amino acids, is from tens to several
thousands. Each protein is characterized by some characteristics, for example
(Brown et al., 1999):

• Structure
• Function
• Charge
• Acidity
• Hydrophilicity
• Molecular weight

An initiation codon defines the start position of a gene in a mRNA where the
translation of the mRNA into protein begins. A stop codon defines the end position.

Proteins with a high similarity are called homologous. Homologues that have
identical functions are called orthologues. Similar proteins that have different
functions are called paralogues.

Proteins have complex structures that include:

• Primary structure (a linear sequence of the amino acids): See, for example Fig. 8.18.

Modelling and Knowledge Discovery in Bioinformatics 263

Table 8.7 The codons of each of the 20 amino acids. The first column represents the first base in the triplet,
the first row represents the second base, and the last column, the last base (Hofstadter, 1979).

U C A G

U Phe
Phe
Leu
Leu

Ser
Ser
Ser
Ser

Tyr
Tyr
–
–

Cys
Cys

Trp

U
C
A
G

C Leu
Leu
Leu
Leu

Pro
Pro
Pro
Pro

His
His
Gln
Gln

Arg
Arg
Arg
Arg

U
C
A
G

A Ile
Ile
Ile
Met

Thr
Thr
Thr
Thr

Asn
Asn
Lys
Lys

Ser
Ser
Arg
Arg

U
C
A
G

G Val
Val
Val
Val

Ala
Ala
Ala
Ala

Asp
Asp
Glu
Glu

Gly
Gly
Gly
Gly

U
C
A
G

• Secondary structure (3D, defining functionality): An example of a 3D represen-
tation of a protein is given in Fig. 8.19.

• Tertiary structure (high-level folding and energy minimisation packing of the
protein): Figure 8.20 shows an example of hexokinase (6000 atoms, 48 kD, 457
amino acids). Polypeptides with a tertiary level of structure are usually referred
to as globular proteins, because their shape is irregular and globular in form.

• Quaternary structure (interaction between two or more protein molecules)

One task that has been explored in the literature is predicting the secondary
structure from the primary one. Segments of a protein can have different shapes
in their secondary structure, which is defined by many factors, one of them being
the amino acid sequence itself. The main types of shape are:

Fig. 8.18 A primary structure of a protein, a linear sequence of the amino acids.

264 Evolving Connectionist Systems

Fig. 8.19 An example of a secondary structure (3D, defining functionality) of a protein obtained with the use
of the PDB dataset, maintained by the National Center for Biological Information (NCBI) of the National Institute
for Health (NIH) in the United States.

• Helix
• Sheet
• Coil (loop)

Qian and Sejnowski (1988) investigated the use of MLP for the task of predicting
the secondary structure based on available labelled data, also used in the following
experiment.

An EFuNN is trained on the data from Qian and Sejnowski (1988) to
predict the shape of an arbitrary new protein segment. A window of 13 amino
acids is used. All together, there are 273 inputs and 3 outputs and 18,000
examples for training are used. The block diagram of the EFuNN model is given
in Fig. 8.21.

The explored EFuNN-based model makes it possible to add new labelled protein
data as they become available with time.

Modelling and Knowledge Discovery in Bioinformatics 265

a)

(b)

Fig. 8.20 (a) An example of a tertiary structure of a protein (high-level folding and energy minimisation
packing); (b) The hexokinase protein (6000 atoms, 48 kD, 457 amino acids; from the PDB database).

x1
x2

x2 7 3

EFuNN
for protein secondary
structure prediction

Helix

Sheet

Coil (loop)

aaa1

aaa1 3

Fig. 8.21 Evolving system for protein secondary structure prediction.

8.6 Gene Regulatory Networks and the System
Biology Approach

8.6.1 The System Biology Approach

The aim of computational system biology is to understand complex biological
objects in their entirety, i.e. at a system level. It involves the integration of different

266 Evolving Connectionist Systems

approaches and tools: computer modeling, large-scale data analysis, and biological
experimentation. One of the major challenges of system biology is the identification
of the logic and dynamics of gene-regulatory and biochemical networks. The
most feasible application of system biology is to create a detailed model of a cell
regulation to provide system-level insights into mechanism-based drug discovery.

System-level understanding is a recurrent theme in biology and has a long history.
The term ‘system-level understanding’ is a shift of focus in understanding a system’s
structure and dynamics as a whole, rather than the particular objects and their
interactions. System-level understanding of a biological system can be derived
from insight into four key properties (Dimitrov et al., 2004; Kasabov et al., 2005c):

1. System structures. These include the gene regulatory network (GRN) and
biochemical pathways. They can also include the mechanisms of modulation of the
physical properties of intracellular and multicellular structures by interactions.

2. System dynamics. System behavior over time under various conditions can be
understood by identifying essential mechanisms underlying specific behaviours
and through various approaches depending on the system’s nature: metabolic
analysis (finding a basis of elementary flux modes that describe the dominant
reaction pathways within the network), sensitivity analysis (the study of how
the variation in the output of a model can be apportioned, qualitatively or
quantitatively, to different sources of variation), dynamic analysis methods such
as phase portrait (geometry of the trajectories of the system in state space),
and bifurcation analysis (bifurcation analysis traces time-varying change(s) in
the state of the system in a multidimensional space where each dimension
represents a particular system parameter (concentration of the biochemical
factor involved, rate of reactions/interactions, etc.). As parameters vary, changes
may occur in the qualitative structure of the solutions for certain parameter
values. These changes are called bifurcations and the parameter values are
called bifurcation values.

3. The control method. Mechanisms that systematically control the state of the cell
can be modulated to change system behavior and optimize potential therapeutic
effect targets of the treatment.

4. The design method. Strategies to modify and construct biological systems having
desired properties can be devised based on definite design principles and
simulations, instead of blind trial and error.

As mentioned above, in reality, analysis of system dynamics and understanding
the system structure are overlapping processes. In some cases analysis of the
system dynamics can give useful predictions in system structure (new interac-
tions, additional member of system). Different methods can be used to study the
dynamical properties of the system:

• Analysis of steady states allows finding the system states when there are no
dynamical changes in system components.

• Stability and sensitivity analyses provide insights into how system behaviour
changes when stimuli and rate constants are modified to reflect dynamic
behaviour.

• Bifurcation analysis, in which a dynamic simulator is coupled with analysis
tools, can provide a detailed illustration of dynamic behaviour.

Modelling and Knowledge Discovery in Bioinformatics 267

The choice of the analytical methods depends on availability of the data that can
be incorporated in the model and the nature of the model. It is important to know
the main properties of the complex system under investigation, such as robustness.

Robustness is a central issue in all complex systems and it is very essential
for understanding the biological object functioning at the system level. Robust
systems exhibit the following phenomenological properties.

• Adaptation, which denotes the ability to cope with environmental changes
• Parameter insensitivity, which indicates a system’s relative insensitivity (to a

certain extent) to specific kinetic parameters
• Graceful degradation, which reflects the characteristic slow degradation of a

system’s functions after damage, rather than catastrophic failure

Revealing all these characteristics of a complex living system helps in choosing
an appropriate method for their modelling, and also constitutes an inspiration for
the development of new CI methods that possess these features.

Modelling living cells in silico has many implications; one of them is testing new
drugs through simulation rather than on patients. According to recent statistics
(Zacks, 2001), human trials fail for 70–75% of the drugs that enter them.

Tomita (2001) stated in his paper, ‘The cell is never conquered until its total
behaviour is understood, and the total behaviour of the cell is never understood
until it is modelled and simulated.’

Computer modelling of processes in living cells is an extremely difficult task for
several reasons; among them are that the processes in a cell are dynamic and depend
on many variables some of them related to a changing environment, and the processes
of DNA transcription and protein translation are not fully understood.

Several cell models have been created and experimented, among them (Bower
and Bolouri, 2001):

• The virtual cell model
• The e-cell model and the self-survival model (Tomita et al., 2001)
• A mathematical model of a cell cycle

A starting point to dynamic modelling of a cell would be dynamic modelling of
a single gene regulation process. In Gibson and Mjolsness (2001) the following
methods for single-gene regulation modelling are discussed, that take into account
different aspects of the processes (chemical reactions, physical chemistry, kinetic
changes of states, and thermodynamics):

• Boolean models, based on Boolean logic (true/false logic)
• Differential equation models
• Stochastic models
• Hybrid Boolean/differential equation models
• Hybrid differential equations/stochastic models
• Neural network models
• Hybrid connectionist-statistical models

The next step in dynamic cell modelling would be to try to model the regulation of
more genes, it is hoped a large set of genes (see Somogyi et al. (2001)). Patterns of

268 Evolving Connectionist Systems

Cell Parameters System Parameters

DNA data of a

RNA data

Protein data

Existing data bases

(DNA, Genes, Proteins,
Metabolic networks)

New knowledge extracted

Output information

Evolving model of a cellliving cell

Fig. 8.22 A general, hypothetical evolving model of a cell: the system biology approach.

collective regulation of genes are observed in the above reference, such as chaotic
attractors. Mutual information/entropy of clusters of genes can be evaluated.

A general, hypothetical evolving model of a cell is outlined in Fig. 8.22 that
encompasses the system biology approach. It is based on the following principles.

1. The model incorporates all the initial information such as analytical formulas,
databases, and rules of behaviour.

2. In a dynamic way, the model adjusts and adapts over time during its operation.
3. The model makes use of all current information and knowledge at different

stages of its operation (e.g., transcription, translation).
4. The model takes as inputs data from a living cell and models its development

over time. New data from the living cell are supplied if such are available over
time.

5. The model runs until it is stopped, or the cell has died.

8.6.2 Gene Regulatory Network Modelling

Modelling processes in a cell includes finding the genetic networks (the network
of interaction and connections between genes, each connection defining if a gene
is causing another one to become active, or to be suppressed). The reverse-
engineering approach is used for this task (D’haeseleer et al., 2000). It consists
of the following. Gene expression data are taken from a cell (or a cell line) at
consecutive time moments. Based on these data a logical gene network is derived.

Modelling and Knowledge Discovery in Bioinformatics 269

For example, it is known that clustering of genes with similar expression patterns
will suggest that these genes are involved in the same regulatory processes.

Modelling gene regulatory networks (GRN) is the task of creating a dynamic
interaction network between genes that defines the next time expression of genes
based on their previous levels of expression. A simple GRN of four genes is shown
in Fig. 8.23. Each node from Fig. 8.23 represents either a single gene/protein or a
cluster of genes that have a similar expression over time, as illustrated in Fig. 8.24.

Models of GRN, derived from gene expression RNA data, have been developed
with the use of different mathematical and computational methods, such as statistical
correlation techniques; evolutionary computation; ANN; differential equations, both
ordinary and partial; Boolean models; kinetic models; state-based models and others.

In Kasabov et al. (2004) a simple GRN model of five genes is derived from time
course gene expression data of leukaemia cell lines U937 treated with retinoic acid
with two phenotype states: positive and negative. The model, derived from time
course data, can be used to predict future activity of genes as shown in Fig. 8.25.

1

2

3
4

–.67.4 .3

–.33 .87

.24

.27

.76

Fig. 8.23 A simplified gene regulatory network where each node represents a gene/protein (or a group of
them) and the arcs represent the connection between them, either excitatory (+) or inhibitory (−).

Fig. 8.24 A cluster of genes that are similarly expressed over time (17 hours).

270 Evolving Connectionist Systems

0 2 4 6 8 10 12 14 16 18
–1.5

–1

–0.5

0

0.5

1

1.5

2
plus : 33 8 27 21

33
8
27
21

Fig. 8.25 The time course data of the expression of four genes (#33, 8, 27, 21) from the cell line used in
(Kasabov et al., 2005). The first four points are used for training and the rest are the predicted by the model
expression values of the genes in a future time.

Another example of GRN extraction from data is presented in Chan et al. (2006b)
where the human response to fibroblast serum data is used (Fig. 8.26) and a GRN
is extracted from it (Fig. 8.27).

Despite the variety of different methods used thus far for modelling GRN and for
system biology in general, there is no single method that will suit all requirements
to model a complex biological system, especially to meet the requirements for
adaptation, robustness, and information integration.

0 5

2

1.5

1

0.5

0

–0.5

–1
10 15 20time (hour)

log10(expression) The Response of Human Fibroblasts to Serum Data

Fig. 8.26 The time course data of the expression of genes in the human fibroblast response to serum benchmark
data (Chan et al., 2006b).

Modelling and Knowledge Discovery in Bioinformatics 271

Fig. 8.27 A GRN obtained with the use of the method from Chan et al. (2006b) on the data from Fig. 8.26,
where ten clusters of gene expression values over time are derived, each cluster represented as a node in the
GRN.

8.6.3 Evolving Connectionist Systems for GRN Modelling

Case Study

Here we used the same data of the U937 cell line treated with retinoic acid. The
results are taken from Kasabov and Dimitrov (2004). Retinoic acid and other
reagents can induce differentiation of cancer cells leading to gradual loss of
proliferation activity and in many cases death by apoptosis. Elucidation of the
mechanisms of these processes may have important implications not only for our
understanding of the fundamental mechanisms of cell differentiation but also for
treatment of cancer. We studied differentiation of two subclones of the leukemic
cell line U937 induced by retinoic acid. These subclones exhibited highly differ-
ential expression of a number of genes including c-Myc, Id1, and Id2 that were
correlated with their telomerase activity; the PLUS clones had about 100-fold
higher telomerase activity than the MINUS clones. It appears that the MINUS
clones are in a more ‘differentiated’ state. The two subclones were treated with
retinoic acid and samples were taken before treatment (time 0) and then at 6 h, 1,
2, 4, 7, and 9 days for the plus clones and until day 2 for the minus clones because
of their apoptotic death. The gene expression in these samples was measured by
Affymetrix gene chips that contain probes for 12,600 genes. To specifically address
the question of telomerase regulation we selected a subset of those genes that were
implicated in the telomerase regulation and used ECOS for their analysis.

The task is to find the gene regulatory network G = �g1� g2� g3� grest−�grest+	 of
three genes g1 = c-Myc, g2 = Id1, and g3 = Id2 while taking into account the
integrated influence of the rest of the changing genes over time denoted grest− and
grest+ representing, respectively, the integrated group of genes which expression
level decreases over time (negative correlation with time), and the group of genes
which expression increases over time (positive correlation with time).

272 Evolving Connectionist Systems

(a) (b)

Fig. 8.28 (a) The gene regulatory network extracted from a trained EfuNN on time course gene expression
data of genes related to telomerase of the PLUS leukemic cell line U937 can be used to derive a state transition
graph for any initial state (gene expression values of the five genes used in the model). The transition graph is
shown in a 2D space of the expression values of only two genes (C-myc and Id1); (b) the same as in (a) but
here applied on the MINUS cell line data.

Groups of genes grest−� grest+ were formed for each experiment of PLUS and
MINUS cell lines, forming all together four groups of genes. For each group of
genes, the average gene expression level of all genes at each time moment was
calculated to form a single aggregated variable grest�

Two EFuNN models, one for the PLUS cell, and one for the MINUS cell, were
trained on five input vector data, the expression level of the genes G(t) at time
moment t, and five output vectors, the expression level G�t +1� of the same genes
recorded at the next time moment. Rules were extracted from the trained structure
that describe the transition between the gene states in the problem space. The
rules are given as a transition graph in Fig. 8.28.

Using the extracted rules that form a gene regulatory network, one can simulate
the development of the cell from initial state G�t = 0�, through time moments in
the future, thus predicting a final state of the cell.

8.7 Summary and Open Problems

Modelling biological processes aims at the creation of models that trace these
processes over time. The models should reveal the steps of development, the
metamorphoses that occur at different points of time, and the ‘trajectories’ of the
developed patterns.

This chapter demonstrates that biological processes are dynamically evolving
and they require appropriate techniques, such as evolving connectionist systems.
In Chapter 9 GRN of genes related to brain functions are derived through
computational neuro-genetic modelling, which is a step further in this area
(Benuskova and Kasabov, 2007).

There are many open problems and questions in bioinformatics that need to be
addressed in the future. Some of them are:

1. Finding the gene expression profiles of all possible human diseases, including
brain disease. Defining a full set of profiles of all possible diseases in silico
would allow for early diagnostic tests.

2. Finding the gene expression profiles and the GRN of complex human behaviour,
such as the ‘instinct for information’ speculated in the introduction.

Modelling and Knowledge Discovery in Bioinformatics 273

3. Finding genetic networks that describe the gene interaction in a particular
diseased tissue, thus suggesting genes that may be targeted for a better treatment
of this disease.

4. Linking gene expression profiles with protein data, and then, with DNA data,
for a full-circle modelling and complete understanding of the cell processes.

8.8 Further Reading

Further material related to specific sections of this chapter can be found as follows.

• Computational Molecular Biology (Pevzner, 2001)
• Generic Knowledge on Bioinformatics (Baldi and Brunak, 1998; Brown et al.,

2000b; Attwood and Parry-Smith, 1999; Boguski, 1998)
• Artificial Intelligence and Bioinformatics (Hofstadter, 1979)
• Applications of Neural Network Methods, Mainly Multilayer Perceptrons and

Self-organising Maps, in the General Area of Genome Informatics (Wu and
McLarty, 2000)

• A Catalogue of Splice Junction Sequences (Mount, 1982)
• Microarray Gene Technologies (Schena, 2000)
• Data Mining in Biotechnology (Persidis, 2000)
• Application of the Theory of Complex Systems for Dynamic Gene Modelling

(Erdi, 2007)
• Computational Modelling of Genetic and Biochemical Networks (Bower and

Bolouri, 2001)
• Dynamic Modelling of the Regulation of a Large Set of Genes (Somogyi et al.,

2001; D’haeseleer et al., 2000)
• Dynamic Modelling of a Single Gene Regulation Process (Gibson and Mjolsness,

2001)
• Methodology for Gene Expression Profiling (Futschik et al., 2003a; Futschik and

Kasabov, 2002)
• Using Fuzzy Neural Networks and Evolving Fuzzy Neural Networks in Bioinfor-

matics (Kasabov, 2007b; Kasabov and Dimitrov, 2004)
• Fuzzy Clustering for Gene Expression Analysis (Futschik and Kasabov, 2002)
• Artificial Neural Filters for Pattern Recognition in Protein Sequences (Schneider

and Wrede, 1993)
• Dynamic Models of the Cell (Tomita et al., 1999)

9. Dynamic Modelling of Brain
Functions and Cognitive Processes

The human brain can be viewed as a dynamic, evolving information-processing
system, and the most complex one. Processing and analysis of information
recorded from brain activity, and modelling of perception, brain functions, and
cognitive processes aim at understanding the brain and creating brainlike intel-
ligent systems.

Brain study relies on modelling. This includes modelling of information prepro-
cessing and feature extraction in the brain (e.g. modelling the cochlea), modelling
the emergence of elementary concepts (e.g. phonemes and words), modelling
complex representation and higher-level functions (e.g. speech and language), and
so on. Whatever function or segment of the brain is modelled, the most important
requirement is to know or to discover the evolving rules, i.e. the rules that allow
the brain to learn, to develop in a continuous way. It is demonstrated here that
the evolving connectionist systems paradigm can be applied for modelling some
brain functions and processes.

This chapter is presented in the following sections.

• Evolving structures and functions in the brain and their modelling
• Auditory, visual, and olfactory information processing and their modelling
• Adaptive modelling of brain states based on EEG and fMRI data
• Computational neuro-genetic modelling: integrating gene and brain information

into a single model
• Brain–gene ontology for EIS
• Summary and open problems
• Further reading

9.1 Evolving Structures and Functions in the Brain
and Their Modelling

9.1.1 The Brain as an Evolving System

One of the last great frontiers of human knowledge relates to the study of the
human brain and human cognition. Models of the cognitive processes are almost
without exception qualitative, and are very limited in their applicability. Cognitive

275

276 Evolving Connectionist Systems

science would be greatly advanced by cognitive process models that are both
qualitative and quantitative, and which evolve in response to data derived from
quantitative measurements of brain activity.

The brain is an evolving system. The brain evolves initially from stem cells
(Fig. 9.1). It evolves its structure and functionality from an embryo to a sophis-
ticated biological information processing system (Amit, 1989; Arbib, 1972, 1987,
1998, 1995, 2002; Churchland and Sejnowski, 1992; Deacon, 1988, 1998; Freeman,
2001; Grossberg, 1982; Joseph, 1998; J. G. Taylor, 1998; van Owen, 1994; Wong,
1995). As an embryo, the brain grows and develops mainly based on genetic
information. Even at the age of three months, some functional areas are already
formed. But identical embryos, with the same genetic information, can develop
in different ways to reach the state of an adult brain, and this is because of the
environment in which the brain evolves. Both the genetic information (nature)
and the environment (nurture) are crucial factors. They determine the evolving
rules for the brain. The challenge is how to reveal these rules and eventually use
them in brain models. Are they the same for every individual?

The brain evolves its functional modules for vision, for speech and language,
for music and logic, and for many cognitive tasks. There are ‘predefined’ areas
of the brain that are ‘allocated’ for language and visual information processing,

Neuronal stem

Stem cell

Neuroblast

Neuron

Neural network

Fig. 9.1 The brain structure evolves from stem cells.

Dynamic Modelling of Brain Functions and Cognitive Processes 277

for example, but these areas may change during the neuronal evolving processes.
The paths of the signals travelling and the information processes in the brain
are complex and different for different types of information. Figure 9.2 shows
schematically the pathways for auditory, visual, and sensory motor information
processing in the human brain.

The cognitive processes of learning in the brain evolve throughout a lifetime.
Intelligence is always evolving. An example is the spoken language learning
process. How is this process evolving in the human brain? Can we model it in a
computer system, in an evolving system, so that the system learns several languages
at a time and adapts all the time to new accents and new dialects? In Kim et al.
(1997) it is demonstrated that an area of the brain evolves differently when two
spoken languages are learned simultaneously, compared with languages that are
learned one after another.

Evolution is achieved through both genetically defined information and learning.
The evolved neurons have a spatial–temporal representation where similar stimuli
activate close neurons. Through dynamic modelling we can trace how musical
patterns ‘move’ from one part of the acoustic space to another in a harmonic and
slightly ‘chaotic’ way. Several principles of the evolving structure, functions, and
cognition of the brain are listed below (for details see van Owen, 1994; Wong,
1995; Amit, 1989; Arbib, 1972, 1987, 1998, 1995, 2002; Churchland and Sejnowski,
1992; J. G. Taylor, 1998; Deacon, 1988, 1998; Freeman, 2001; Grossberg, 1982;
Joseph, 1998):

• Redundancy, i.e. there are many redundant neurons allocated to a single
stimulus or a task; e.g. when a word is heard, there are hundreds of thousands
of neurons that are immediately activated.

• Memory-based learning, i.e. the brain stores exemplars of facts that can be
recalled at a later stage. Some studies (see Widrow (2006)) suggest that all human
actions, including learning and physical actions, are based on the memory.

Fig. 9.2 Different areas of the human brain transfer different signals (auditory, visual, somatic-sensory, and
control-action) shown as lines (Reproduced with permission from http://brainmuseum.org/circuitry/index.html).

278 Evolving Connectionist Systems

• Evolution is achieved through interaction of an individual with the environment
and with other individuals.

• Inner processes take place, e.g. information consolidation through sleep
learning.

• The evolving process is continuous and lifelong.
• Through the process of evolving brain structures (neurons, connections) higher-

level concepts emerge; they are embodied in the structure and represent a level
of abstraction.

It seems that the most appropriate sources of data for brain modelling tasks
would come from instrumental measurements of the brain activities. To date, the
most effective means available for these types of brain measurement are electroen-
cephalography (EEG), magnetoencephalography (MEG), and functional magnetic
resonance imaging (fMRI). Once the data from these measurement protocols have
been transformed into an appropriate state space representation, an attempt to
model the dynamic cognitive process can be made.

9.1.2 From Neurons to Cognitive Functions

The brain is basically composed of neurons and glial cells. Despite the number
of glial cells being 10 to 50 times bigger than the number of neurons, the role of
information processing is given exclusively to the neurons (thus far). For this very
reason most neural network models do not take into account the glial cells.

Neurons can be of different types according to their main functionality. There
are sensory neurons, motor neurons, local interneurons, projection interneurons,
and neuroendocrine cells. However, independently of the type, a neuron is basically
constituted of four parts: input, trigger, conduction, and output. These parts are
commonly represented in neuronal models.

In a very simplified manner, the neurons connect to each other in two basic
ways: through divergent and convergent connections. Divergent connection occurs
when the output of a neuron is split and is connected to the input of many other
neurons. Convergent connections are those where a certain neuron receives input
from many neurons.

It is with the organization of the neurons in ensembles that functional compart-
ments emerge. Neurosciences provide a very detailed picture of the organization
of the neural units in the functional compartments (functional systems). Each
functional system is formed by various brain regions that are responsible for
processing different types of information. It is shown that paths, which link
different components of a functional system are hierarchically organized.

It is mainly in the cerebral cortex where the cognition functions take place.
Anatomically, the cerebral cortex is a thin outer layer of the cerebral hemisphere
with thickness around 2 to 4 mm. Cerebral cortex is divided into four lobes: frontal,
parietal, temporal, and occipital (see Fig. 9.3). Each lobe has different functional
specialisation, as described in Table 9.1.

Neurons and neuronal ensembles are characterised by their constant activity
represented as oscillations of wave signals of different main frequencies as shown
in Box 9.1.

Dynamic Modelling of Brain Functions and Cognitive Processes 279

Box 9.1. Main frequencies of wave signals in ensembles of neurons
in the brain

Alpha (8–12 Hz)
Beta (13–28 Hz)
Gamma (28–50 Hz)
Delta (0.5–3.5Hz)
Theta (4–7 Hz)

9.1.3 Modelling Brain Functions

The brain is the most complex information processing machine. It processes
data, information, and knowledge at different levels. Modelling the brain as an
information processing machine would have different results depending on the
goals of the models and the detail with which the models represent the genetic,
biological, chemical, physical, physiological, and psychological rules and the laws
that govern the functioning and behaviour of the brain.

Fig. 9.3 The cerebral cortex and the human brain (from Benuskova and Kasabov (2007)).

Table 9.1 Location of cognitive functions in the cerebral cortex of the brain.

Function Cerebral Cortex Location

Visual perception Occipital cortex
Auditory perception Temporal cortex
Multimodal association (visio-spatial location, language) Parietal-temporal
Multimodal emotions, memory Temporal, frontal, parietal

280 Evolving Connectionist Systems

Generally speaking there are six levels of information processing in the brain
as shown in Fig. I.1. We consider here the following four.

Molecular/Genetic Level

At the genetic level the genome constitutes the input information, whereas the
phenotype constitutes the output result, which causes: (1) changes in the neuronal
synapses (learning), and (2) changes in the DNA and its gene expression (Marcus,
2004). As pointed out in the introduction, neurons from different parts of the brain,
associated with different functions, such as memory, learning, control, hearing,
and vision, function in a similar way and their functioning is genetically defined.
This principle can be used as a unified approach to building different neuronal
models to perform different functions, such as speech recognition, vision, learning,
and evolving. The genes relevant to particular functions can be represented as
a set of parameters of a neuron. These parameters define the way the neuron
is functioning and can be modified through feedback from the output of the
neuron. Some genes may get triggered-off, or suppressed, whereas others may get
triggered-on, or excited.

An example of modelling at this level is given in Section 9.4, ‘Computational
Neuro-Genetic Modelling’.

Single Neuronal Level

There are many information models of neurons that have been explored in the
neural network theory (for a review see Arbib (2003)). Among them are:

1. Analytical models. An example is the Hodgkin–Huxley model (see Nelson and
Rinzel (1995)) as it is considered to be the pioneering one describing the
neuronal action potentials in terms of ion channels and current flow. Further
studies expanded this work and revealed the existence of a wide number of ion
channels (compartments) as well as showing that the set of ion channels varies
from one neuron to another.

2. McCulloch and Pitts’ (1943) type models. This type is currently used on tradi-
tional ANN models including most of the ECOS methods presented in Part I of
this book.

3. Spiking neuronal models (see Chapter 4).

According to the neuronal model proposed in Matsumoto (2000) and Shigematsu
et al., (1999), a neuron accepts input information through its synapses and, subject
to the output value of the neuron, it modifies back some of the synapses, those
that, although the feedback signal reaches them, still have a level of information
(weights, chemical concentration) above a certain threshold. The weights of the
rest of the synapses decrease; see Fig. 9.4. Tsukada et al. (1996) proposed a spatial-
temporal learning rule for LTP in hippocampus.

Dynamic Modelling of Brain Functions and Cognitive Processes 281

^^^^

^^^^

^^^^

Y(t)

x1(t)

x2(t)

x3(t)

Fig. 9.4 The model of a neuron proposed by Gen Matsumoto (2000). According to the model, each neuron
adjusts its synapses through a feedback from its output activation.

Neural Network (Ensemble) Level

Information is processed in ensembles of neurons that form a functionally defined
area. A neural network model comprises many neuronal models. The model is an
evolving one, and a possible implementation would be with the use of the methods
and techniques presented in Part I.

Entire Brain Level

Many neuronal network modules are connected to model a complex brain structure
and learning algorithms.

One model is introduced in Matsumoto and Shigematsu (1999). At different
levels of information processing, similar, and at the same time, different principles
apply. For example, the following common principles of learning across all levels
of information processing were used in the model proposed by Matsumoto (2000)
and Shigematsu et al. (1999):

• Output dependency, i.e. learning is based on both input information and output
reaction–action.

• Self-learning, i.e. the brain acquires its function, structure, and algorithm based
on both a ‘super algorithm’ and self-organisation (self-learning).

Modelling the entire brain is far from having been achieved and it will take many
years to achieve this goal, but each step in this direction is an useful step towards
understanding the brain and towards the creation of intelligent machines that will
help people. Single functions and interactions between parts of the brain have been
modelled. An illustration of using spiking neural networks (SNN; see Chapter 4)
for modelling thalamus–cortical interactions is shown in Fig. 9.5 (Benuskova and
Kasabov, 2007) and explained below.

The model from Fig. 9.5 has two layers. The input layer is supposed to represent
the thalamus (the main subcortical sensory relay in the brain) and the output
layer represents cerebral cortex. Individual model neurons can be based upon the
classical spike response model (SRM; Gerstner and Kistler (2002)). The weight of

282 Evolving Connectionist Systems

a)

Thalamus

Cortex

Spiking neural
network
(cortex)

One-to-many feedforward
input connections

Input layer
(thalamus)

Jij

σijGaussian lateral and input
connections

b)

Fig. 9.5 (a) Neural network model represents the thalamocortical (TC) system; (b) the SNN represents cerebral
cortex. About 10–20% of the neurons are inhibitory neurons that are randomly positioned on the grid (filled
circles). The input layer represents the thalamic input to cortex. The presented model does not have a feedback
loop from the cortex to the thalamus (from Benuskova and Kasabov (2007)).

the synaptic connection from neuron j to neuron i is denoted Jij. It takes positive
(negative) values for excitatory (inhibitory) connections, respectively. Lateral and
input connections have weights that decrease in value with distance from the centre
neuron i according to a Gaussian formula whereas the connections themselves can
be established at random (for instance with p = 0�5).

For example, the asynchronous thalamic activity in the awake state of the brain
can be simulated by a series of random input spikes generated in the input
layer neurons. For the state of vigilance, a tonic, low-frequency, nonperiodic, and
nonbursting firing of thalamocortical input is typical. For simulation of the sleep
state we can employ regular oscillatory activity coming out of the input layer,
etc. LFP (Local Field Potential) can be defined as an average of all instantaneous
membrane potentials; i.e.

��t� = 1

N

N∑

i=1

ui�t� (9.1)

Spiking neurons can be interconnected into neural networks of arbitrary archi-
tecture. At the same time it has been shown that SNN have the same compu-
tational power as traditional ANNs (Maas, 1996, 1998). With spiking neurons,
however, new types of computation can be modelled, such as coincidence detection,
synchronization phenomena, etc. Spiking neurons are more easily implemented
in hardware than traditional neurons and integrated with neuromorphic systems.

9.2 Auditory, Visual, and Olfactory Information Processing
and Their Modelling

The human brain deals mainly with five sensory modalities: vision, hearing,
touch, taste, and smell. Each modality has different sensory receptors. After the
receptors perform the stimulus transduction, the information is encoded through

Dynamic Modelling of Brain Functions and Cognitive Processes 283

the excitation of neural action potentials. The information is encoded using pulses
and time intervals between pulses. This process seems to follow a common pattern
for all sensory modalities, however, there are still many unanswered questions
regarding the way the information is encoded in the brain.

9.2.1 Auditory Information Processing

The hearing apparatus of an individual transforms sounds and speech signals into
brain signals. These brain signals travel farther to other parts of the brain that
model the (meaningful) acoustic space (the space of phones), the space of words,
and the space of languages (see Fig. 9.6). The auditory system is adaptive, so new
features can be included at a later stage and existing ones can be further tuned.

Precise modelling of hearing functions and the cochlea is an extremely difficult
task, but not impossible to achieve (Eriksson and Villa, 2006). A model of the
cochlea would be useful for both helping people with disabilities, and for the
creation of speech recognition systems. Such systems would be able to learn and
adapt as they work.

The ear is the front-end auditory apparatus in mammalians. The task of this
hearing apparatus is to transform the environmental sounds into specific features
and transmit them to the brain for further processing. The ear consists of three
divisions: the outer ear, the middle ear, and the inner ear, as shown in Fig. 9.7.

Signal Model of
the cochlea

Acoustic
Model

Word
Model

Language
Model

Fig. 9.6 A schematic diagram of a model of the auditory system of the brain.

Fig. 9.7 A schematic diagram of the outer ear, the middle ear, and the inner ear. (Reproduced with permission
from http://www.glenbrook.k12.il.us/gbssci/phys/Class/sound/u11l2d.html).

284 Evolving Connectionist Systems

Figure 9.8 shows the human basilar membrane and the approximate position of
the maximal displacement of tones of different frequencies. This corresponds to a
filter bank of several channels, each tuned to a certain band of frequencies.

There are several models that have been developed to model functions of the
cochlea (see, e.g. Greenwood (1961, 1990), de-Boer and de Jongh (1978), Allen
(1995), Zwicker (1961), Glassberg and Moore (1990), and Eriksson and Villa, 2006).
Very common are the Mel filter banks and the Mel scale cepstra coefficients (Cole
et al., 1995). For example, the centres of the first 26 Mel filter banks are the
following frequencies (in Hertz): 86, 173, 256, 430, 516, 603, 689, 775, 947, 1033,
1120, 1292, 1550, 1723, 1981, 2325, 2670, 3015, 3445, 3962, 4565, 5254, 6029, 6997,
8010, 9216, 11025. The first 20 Mel filter functions are shown in Fig. 9.9.

Other representations use a gammatone function (Aertsen and Johannesma,
1980). It is always challenging to improve the acoustic modelling functions and
make them closer to the functioning of the biological organs, which is expected to
lead to improved speech recognition systems.

The auditory system is particularly interesting because it allows us not only
to recognize sound but also to perform sound source location efficiently. Human
ears are able to detect frequencies in the approximate range of 20 to 20,000 Hz.

Fig. 9.8 Diagram of the human basilar membrane, showing the approximate positions of maximal displacement
to tones of different frequencies.

Dynamic Modelling of Brain Functions and Cognitive Processes 285

Fig. 9.9 The first 20 Mel filter functions.

Each ear processes the incoming signals independently, which are later integrated
considering the signals’ timing, amplitudes, and frequencies (see Fig. 9.10). The
narrow difference of time between incoming signals from the left and right ear
results in a cue to location of signal origin.

How do musical patterns evolve in the human brain? Music causes the emergence
of patterns of activities in the human brain. This process is continuous, evolving,
although in different pathways depending on the individual.

Fig. 9.10 A schematic representation of a model of the auditory system. The left and the right ear information
processing are modelled separately and the results are later integrated considering the signal’s timing, amplitudes,
and frequencies.

286 Evolving Connectionist Systems

Each musical piece is characterised by specific main frequencies (formants) and
rules to change them over time. There is a large range of frequencies in Mozart’s
music, the greatest energy being in the spectrum of the Thetà brain activity (see
Box 9.1). One can speculate that this fact may explain why the music of Mozart
stimulates human creativity. But it is not the ‘static’ picture of the frequencies
that makes Mozart’s music fascinating, it is the dynamics of the changes of the
patterns of these frequencies over time.

9.2.2 Visual Information Processing

The visual system is composed of eyes, optic nerves, and many specialised areas
of the cortex (the ape for example has more than 30).

The image on the retina is transmitted via the optic nerves to the first visual
cortex (V1), which is situated in the posterior lobe of the brain. There the infor-
mation is divided into two main streams, the ‘what’ tract and the ‘where’ tract.

The ventrical (‘what’) tract separates targets (objects and things) in the field of
vision and identifies them. The tract traverses the occipital lobe to the temporal
lobe (behind the ears).

The dorsal tract (‘where’) is specialised in following the location and position
of the objects in the surrounding space. The dorsal tract traverses the back of the
head to the top of the head.

How and where the information from the two tracts is united to form one
complete perception is not completely known.

On the subject of biological approaches for processing incoming information,
Hubel and Wiesel (1962) received many awards for their description of the human
visual system. Through neuro-physiological experiments, they were able to distin-
guish some types of cells that have different neurobiological responses according
to the pattern of light stimulus. They identified the role that the retina has as a
contrast filter as well as the existence of orientation selective cells in the primary
visual cortex (Fig. 9.11). Their results have been widely implemented in biologically
realistic image acquisition approaches.

The idea of contrast filters and orientation selective cells can be considered a
feature selection method that finds a close correspondence with traditional ways
of image processing, such as Gaussian and Gabor filters.

A Gaussian filter can be used for modelling ON/OFF states of receptive cells:

G�x� y� = e

(
x2+y2

2�2

)

(9.2)

A Gabor filter can be used to model the states of orientation cells:

G�x� y� = e

(
x′2+�2y′2

2�2

)

cos
(

2	
x′

+�

)

(9.3)

x′ = x cos���+y sin���

y′ = −x sin���+y cos��� (9.4)

Dynamic Modelling of Brain Functions and Cognitive Processes 287

0° 45° 90° 135°

180° 225° 270° 315°

Direction Selective Cells

ON

Contrast Cells

OFF

Fig. 9.11 Contrast cells and direction selective visual cells.

where � = phase offset, � = orientation (0,360),
 = wavelength, � = standard
deviation of the Gaussian factor of the Gabor function, and � = aspect ratio
(specifies the ellipticity of the support of the Gabor function).

A computational model of the visual subsystem would consist of the following
levels.

1. A visual preprocessing module, that mimics the functioning of the retina, the
retinal network, and the lateral geniculate nucleus (LGN).

2. An elementary feature recognition module, responsible for the recognition of
features such as the curves of lips or the local colour. The peripheral visual
areas of the human brain perform a similar task.

3. A dynamic feature recognition module that detects dynamical changes of
features in the visual input stream. In the human brain, the processing of visual
motion is performed in the V5/MT area of the brain.

4. An object recognition module that recognises elementary shapes and their parts.
This task is performed by the inferotemporal (IT) area of the human brain.

288 Evolving Connectionist Systems

5. An object/configuration recognition module that recognises objects such as
faces. This task is performed by the IT and parietal areas of the human brain.

9.2.3 Integrated Auditory and Visual Information Processing

How auditory and visual perception relate to each other in the brain is a funda-
mental question; see Fig. 9.12. Here, the issue of integrating auditory and visual
information in one information processing model is discussed. Such models
may lead to better information processing and adaptation in future intelligent
systems.

A model of multimodal information processing in the brain is presented in
Deacon (1988); see Fig. 9.13. The model includes submodels of the functioning
of different areas of the human brain related to auditory and simultaneously
perceived visual stimuli. Some of the submodules are connected to each other, e.g.
the prefrontal cortex submodel and the Broca’s area submodel.

Each distinct processing information unit has serial and hierarchical pathways
where the information is processed. In the visual system, for instance, the infor-
mation is divided in submodalities (colour, shape, and movements) that are
integrated at a later stage. Analysing one level above, the same pattern can be

Visual field

Master Visual Map

Left Auditory field

…

Right Auditory field

Left Auditory Map

Master Auditory Map

Colour Orientation Movement
Frequency

Band 1
Frequency

Band 2
Frequency

Band 1
Frequency

Band2

time time

Information Processing
Integration

Occiptotemporal Lobe Temporal Lobe

Parietotemporal Lobe

Right Auditory Map

Fig. 9.12 A schematic representation of a model of multimodal information processing (visual and auditory
information) in the brain.

Dynamic Modelling of Brain Functions and Cognitive Processes 289

Fig. 9.13 Deacon’s model for multi-modal information processing (Deacon, 1988).

noticed. The information from different modules converges to a processing area
responsible for the integration. A simple example is the detection of a certain food
by the integration of the smell and the visual senses.

9.2.4 Olfactory Information Processing

Smell and taste are chemical senses and the only senses that do not maintain
the spatial relations of the input receptors. However, after the transduction of the
olfactory stimuli, the encoding is done similarly to the other senses, using pulse
rate or pulse time. Furthermore, contrast analysis is done in the first stage of the
pathway and parallel processing of olfactory submodalities has been proven to
happen in the brain.

There are different types of olfactory sensory neurons that are stimulated by
different odorants. Thus, having a large number of different receptor types allows
many odorants to be discriminated. The olfactory discrimination capacity in
humans varies highly and can reach 5000 different odorants in trained people.

Chemical stimuli are acquired by millions of olfactory sensory neurons that can
be of as many as 1000 types. In the olfactory bulb, there is the convergence of
sensory neurons to units called glomeruli (approx. 25,000 to 1), that are organized
in such a way that information from different receptors is placed in different
glomeruli. Each odorant (smell) is recognized using several glomeruli and each
glomerula can take part to recognize many odorants. Thus, glomeruli are not
odour-specific, but a specific odour is described by a unique set of glomeruli. How
the encoding is done is still unknown. The glomeruli can be roughly considered
to represent the neural ‘image’ of the odour stimuli. The information is then sent
to different parts of the olfactory cortex for odour recognition; see Fig. 9.14.

Artificial sensors for odour detection are widely available and include metal
oxide sensors, polymer resonating sensors, and optical bead sensors. The second
step, after data acquisition, is to process the olfactory information. An artificial
system that processes olfactory information is required to have mainly three
properties: process many sensor inputs; discern a large number of different odours;
and handle noisy acquired data.

290 Evolving Connectionist Systems

Fig. 9.14 A schematic diagram of the olfactory information pathway.

There are many models aiming to describe the flow of olfactory information.
Some of them are oversimplified, tending only to perform pattern recognition
without a long biological description and some of them very complex and detailed.
A spiking neural network is used in the system described in Allen et al. (2002)
where odour acquisition is done through a two-dimensional array of sensors (more
than 1000). The temporal binary output of the sensor is then passed to a spiking
neural network for classification of different scents. The system is then embedded
in an FPGA chip.

In Zanchettin and Ludermir (2004) an artificial nose model and a system are
experimented on for the recognition of gasses emitted at petrol stations, such as
ethane, methane, butane, propane, and carbon monoxide. The model consists of:

• Sensory elements: eight polypyrrol-based gas sensors
• EFuNN for classification of the sensory input vectors into one or several of the

output classes (gasses)

The EFuNN model performs at a 99% recognition rate whereas a time-delay ANN
performs at the rate of 89%. In addition, the EFuNN model can be further trained
on new gasses, new sensors, and new data, also allowing the insertion of some
initial rules into the EFuNN structure as initialisation, that are well-known rules
from the theory of the gas compounds.

Other olfactory models and ‘artificial nose’ systems have been developed and
implemented in practice (Valova et al., 2004).

9.3 Adaptive Modelling of Brain States Based on EEG
and fMRI Data

9.3.1 EEG Measurements

The moving electrical charges associated with a neuronal action potential emit
a minute, time-varying electromagnetic field. The complex coordinated activities
associated with cognitive processes require the cooperation of millions of neurons,
all of which will emit this electrical energy. The electromagnetic fields generated
by these actively cooperating neurons linearly sum together via superposition.
These summed fields propagate through the various tissues of the cranium to the

Dynamic Modelling of Brain Functions and Cognitive Processes 291

scalp surface, where EEGs can detect and record this neural activity by means of
measuring electrodes placed on the scalp.

Historically, expert analysis via visual inspection of the EEG has tended to focus
on the activity in specific wavebands, such as delta, theta, alpha, and beta. As
far back as 1969, attempts were made to use computerised analysis of EEG data
in order to determine the subject’s state of consciousness. Figure 9.15 shows an
example of EEG data collected from two states of the same subject: the normal
state and an epileptic state.

Noise contaminants in an EEG are called ‘artefacts’. For example, the physical
movement of the test subject can contaminate an EEG with the noise generated
by the action potentials of the skeletal muscles. Even if the skeletal muscle action
potentials do not register on the EEG, the shifting mechanical stress on the
electrodes can alter the contact with the subject, thereby affecting the measuring
electrodes’ conductivity. These variations in electrode contact conductivity will
also result in the recording of a movement artefact.

Fig. 9.15 EEG signals recorded in eight channels from a person in a normal state and in an epileptic state
(the onset of epilepsy is manifested after the time unit 10).

292 Evolving Connectionist Systems

9.3.2 ECOS for Brain EEG Data Modeling, Classification, and Brain
Signal Transition Rule Extraction

In Kasabov et al. (2007) a methodology for continuous adaptive learning and
classification of human scalp electroencephalographic (EEG) data in response to
multiple stimuli is introduced based on ECOS. The methodology is illustrated on a
case study of human EEG data, recorded at resting, auditory, visual, and mixed audio-
visual stimulation conditions. It allows for incremental continuous adaptation and
for the discovery of brain signal transition rules, such as: IF segments S1,S2, � � � , Sn
of the brain are active at a time moment t THEN segments R1,R2, � � � , Rm will
become active at the next time moment (t+1). The method results in a good classi-
fication accuracy of EEG signals of a single individual, thus suggesting that ECOS
could be successfully used in the future for the creation of intelligent persona-
lized human–computer interaction models, continuously adaptable over time, as
well as for the adaptive learning and classification of other EEG data, representing
different human conditions. The method could help better understand hidden
signal transitions in the brain under certain stimuli when EEG measurement is used.

Figure 9.16 shows the rule nodes of an evolved ECOS model from data of a person
A using 37 EEG channels as input variables, plotted in a 3D PCA space. The circles
represent rule nodes allocated for class 1 (auditory stimulus); asterisks, class 2

Fig. 9.16 The rule nodes of an evolved ECOS model from data of a person A using 37 EEG channels as input
variables, plotted in a 3D PCA space. The circles represent rule nodes allocated for class 1 (auditory stimulus);
asterisks, class 2 (visual stimulus); squares, class 3 (AV, auditory and visual stimuli combined); and triangles,
class 4 (no stimulus). It can be seen that some rule nodes allocated to one stimulus are close in the model’s
space, meaning that they represent close location on the EEG surface. At the same time, there are nodes that
represent each of the stimuli and are spread all over the whole space, meaning that for a single stimulus the
brain activates many areas at a different time of the presentation of the stimulus.

Dynamic Modelling of Brain Functions and Cognitive Processes 293

(visual stimulus); squares, class 3 (AV, auditory and visual stimulus combined);
and triangles, class 4 (no stimulus). It can be seen that rule nodes allocated to one
stimulus are close in the space, which means that their input vectors are similar.

The allocation of the above nodes (cluster centres) back to the EEG channels for
each stimulus is shown in Fig. 9.17 and Fig. 9.18 shows the original EEG electrodes
allocation on the human scalp.

9.3.3 Computational Modelling Based on fMRI Brain Images

Neural activity is a metabolic process that requires oxygen. Active neurons require
more oxygen than quiescent neurons, so they extract more oxygen from the blood
haemoglobin.

Functional magnetic resonance imaging (fMRI) makes use of this fact by using
deoxygenated haemoglobin as an MRI contrast agent. The entire theory of MRI is
based on the fact that different neurons have different relaxation times. In MRI, the
nuclear magnetic moments of the neurons to be imaged are aligned with a powerful

Fig. 9.17 The location of the selected, significantly activated electrodes, from the ECOS model in Fig. 9.16 for
each of the stimuli of classes from 1 to 4 (A, V, AV, No, from left to right, respectively).

Fig. 9.18 Layout of the 64 EEG electrodes (extended International 10-10 System).

294 Evolving Connectionist Systems

magnetic field. Once the nuclei are aligned, their magnetic moment is excited with
a tuned pulse of resonance frequency energy. As these excited nuclear magnetic
moments decay back to their rest state, they emit the resonance frequency energy
that they have absorbed. The amount of time that is taken for a given neuron to
return, or decay, to the rest state depends upon that neuron’s histological type.
This decay time is referred to as the relaxation time, and nerve tissues can be
differentiated from each other on the basis of their varying relaxation times.

In this manner, oxygenated haemoglobin can be differentiated from
deoxygenated haemoglobin because of the divergent relaxation times. fMRI seeks
to identify the active regions of the brain by locating regions that have increased
proportions of deoxygenated haemoglobin.

EEG and fMRI have their own strengths and weaknesses when used to measure
the activity of the brain. EEGs are prone to various types of noise contami-
nation. Also, there is nothing intuitive or easy to understand an EEG recording. In
principle, fMRI is much easier to interpret. One only has to look for the contrasting
regions contained in the image. In fMRI, the resonance frequency pulse is tuned
to excite a specific slice of tissue. This localisation is enabled by a small gradient
magnetic field imposed along the axis of the imaging chamber. After the ‘slice
select’ resonance frequency excitation pulse, two other magnetic gradients are
imposed on the other two axes within the chamber. These additional gradients
are used for the imaging of specific tissue ‘voxels’ within the excited slice. If the
subject moves during this time, the spatial encoding inherent in these magnetic
gradients can be invalidated. This is one of the reasons why MRI sessions last so
long. Some type of mechanical restraint on the test subject may be necessary to
prevent this type of data invalidation.

The assumption is that it should be possible to use the information about
specific cortical activity in order to make a determination about the underlying
cognitive processes. For example, if the temporal regions of the cortex are quite
active while the occipital region is relatively quiescent, we can determine that the
subject has been presented with an auditory stimulus. On the other hand, an active
occipital region would indicate the presence of a visual stimulus. By collecting
data while a subject is performing specific cognitive tasks, we can learn which
regions of the brain exhibit what kind of activity for those cognitive processes. We
should also be able to determine the brain activity that characterises emotional
states (happy, sad, etc.) and pathological states (epilepsy, depression, etc.) as well.
Because cognition is a time-varying and dynamic process, the models that we
develop must be capable of mimicking this time-varying dynamic structure.

In Rajapakse et al. (1998) a computational model of fMRI time series analysis
is presented (see Fig. 9.19). It consists of phases of activity measurement, adding

Stimulus

fMRI series y(t)

Noise

Neuronal
activity
model

Hemo-
dynamic
modulation

Neuronal
response

Hemodynamic response

x(t)

Fig. 9.19 Rajapakse’s computational model of fMRI time-series analysis consists of phases of neuronal activity
measurement, modulation, adding noise, and fMRI time series analysis (modified from Rajapakse et al. (1998)).

Dynamic Modelling of Brain Functions and Cognitive Processes 295

noise, modulation, and fMRI time-series analysis. The time series of fMRI are
recorded from subjects performing information retrieval tasks.

Online brain image analysis, where brain images are added to the model and
the model is updated in a continuous way, is explored in Bruske et al. (1998),
where a system for online clustering of fMRI data is proposed.

A comprehensive study of brain imaging and brain image analysis related to
cognitive processes is presented in J. G. Taylor (1999). Brain imaging has started
to be used for the creation of models of consciousness. A three-stage hypothetical
model of consciousness, for example is presented in J. G. Taylor (1998).

Using ECOS for online brain image analysis and modelling is a promising area
for further research, as ECOS allow for online model creation, model adaptation,
and model explanation.

9.4 Computational Neuro-Genetic Modelling (CNGM)

9.4.1 Principles of CNGM

A CNGM integrates genetic, proteomic, and brain activity data and performs data
analysis, modelling, prognosis, and knowledge extraction that reveals relationships
between brain functions and genetic information (see Fig. I.1).

A future state of a molecule M ′ or a group of molecules (e.g. genes, proteins)
depends on its current state M, and on an external signal Em:

M ′ = Fm �M�Em� (9.5)

A future state N ′ of a neuron, or an ensemble of neurons, will depend on its
current state N and on the state of the molecules M (e.g. genes) and on external
signals En:

N ′ = Fn �N�M�En� (9.6)

And finally, a future cognitive state C′ of the brain will depend on its current state
C and also on the neuronal N and the molecular M state and on the external
stimuli Ec:

C′ = Fc �C�N�M�Ec� (9.7)

The above set of equations (or algorithms) is a general one and in different cases
it can be implemented differently as shown in Benuskova and Kasabov (2007) and
illustrated in the next section.

9.4.2 Integrating GRN and SNN in CNGM

In Kasabov and Benuskova (2004) and Benuskova and Kasabov (2007) we have
introduced a novel computational approach to brain neural network modelling that

296 Evolving Connectionist Systems

integrates ANN with an internal dynamic GRN (see Fig. 9.20. Interaction of genes
in model neurons affects the dynamics of the whole ANN through neuronal param-
eters, which are no longer constant, but change as a function of gene expression.
Through optimisation of the GRN, initial gene/protein expression values, and
ANN parameters, particular target states of the neural network operation can be
achieved.

It is illustrated by means of a simple neuro-genetic model of a spiking neural
network (SNN). The behaviour of SNN is evaluated by means of the local field
potential (LFP), thus making it possible to attempt modelling the role of genes
in different brain states, where EEG data are available to test the model. We use
the standard FFT signal-processing technique to evaluate the SNN output and
compare with real human EEG data. For the objective of this work, we consider
the time-frequency resolution reached with the FFT to be sufficient. However,
should higher accuracy be critical, wavelet transform, which considers both time
and frequency resolution, could be used instead. Broader theoretical and biological
background of CNGM construction is given in Kasabov and Benuskova (2004) and
Benuskova and Kasabov (2007).

In general, we consider two sets of genes: a set Ggen that relates to general cell
functions and a set Gspec that defines specific neuronal information-processing
functions (receptors, ion channels, etc.). The two sets form together a set G =

G1� G2� � � � � Gn�. We assume that the expression level of each gene gj�t +�t ′� is a
nonlinear function of expression levels of all the genes in G,

gj�t +�t ′� = �

(
n∑

k=1

wjkgk�t�

)

(9.8)

We work with normalized gene expression values in the interval (0,1). The coeffi-
cients wij ∈ �−5� 5� are the elements of the square matrix W of gene interaction
weights. Initial values of gene expressions are small random values; i.e. gj�0� ∈
�0� 0�1�.

In the current model we assume that: (1) one protein is coded by one gene;
(2) the relationship between the protein level and the gene expression level is

Fig. 9.20 A more complex case of CNGM, where a GRN of many genes is used to represent the interaction
of genes, and an ANN is employed to model a brain function. The model spectral output is compared against
real brain data for validation of the model and for verifying the derived gene interaction GRN after a GA model
optimization is applied (see Chapters 6 and 8) (Kasabov et al., 2005; Benuskova and Kasabov, 2007).

Dynamic Modelling of Brain Functions and Cognitive Processes 297

nonlinear; and (3) protein levels lie between the minimal and maximal values.
Thus, the protein level pj�t +�t� is expressed by

pj�t +�t� = �pmax
j −pmin

j ��

(
n∑

k=1

wjkgk�t�

)

+pmin
j (9.9)

The delay �t < �t ′ corresponds to the delay caused by the gene transcription,
mRNA translation into proteins, and posttranslational protein modifications
(Abraham et al., 1993). Delay �t includes also the delay caused by gene
transcription regulation by transcription factors.

The GRN model from Eqs. (9.8) and (9.9) is a general one and can be integrated
with any ANN model into a CNGM. Unfortunately the model requires many
parameters to be either known in advance or optimized during a model simulation.
In the presented experiments we have made several simplifying assumptions:

1. Each neuron has the same GRN, i.e. the same genes and the same interaction
gene matrix W.

2. Each GRN starts from the same initial values of gene expressions.
3. There is no feedback from neuronal activity or any other external factors to

gene expression levels or protein levels.
4. Delays �t are the same for all proteins and reflect equal time points of gathering

protein expression data.

We have integrated the above GRN model with the SNN illustrated in Fig. 9.20.
Our spiking neuron model is based on the spike response model, with excitation
and inhibition having both fast and slow components, both expressed as double
exponentials with amplitudes and the rise and decay time constants (see chapter 4).

Neuronal parameters and their correspondence to particular proteins are
summarized in Table 9.2. Several parameters (amplitude, time constants) are linked

Table 9.2 Neuronal parameters and their corresponding proteins
(receptors/ion channels).

Neuron’s parameter Pj Relevant protein pj

Amplitude and time constants of:
Fast excitation AMPAR
Slow excitation NMDAR
Fast inhibition GABRA
Slow inhibition GABRB
Firing threshold and its decay time constant SCN and/or KCN and/or CLC

AMPAR = (amino-methylisoxazole- propionic acid) AMPA receptor; NMDAR = (N -methyl-
D-aspartate acid) NMDA receptor; GABRA = (gamma-aminobutyric acid) GABA receptor
A; GABRB = GABA receptor B; SCN = sodium voltage-gated channel; KCN = kalium
(potassium) voltage-gated channel; CLC = chloride channel.

298 Evolving Connectionist Systems

to one protein. However their initial values in Eq. (9.3) will be different. Relevant
protein levels are directly related to neuronal parameter values PJ such that

Pj�t� = Pj�0�pj�t� (9.10)

where Pj�0� is the initial value of the neuronal parameter at time t = 0. Moreover,
in addition to the gene coding for the proteins mentioned above, we include in
our GRN nine more genes that are not directly linked to neuronal information-
processing parameters. These genes are: c-jun, mGLuR3, Jerky, BDNF, FGF-2,
IGF-I, GALR1, NOS, and S100beta. We have included them for later modelling of
some diseases.

We want to achieve a desired SNN output through optimisation of the model
294 parameters (we are optimising also the connectivity and input frequency to
the SNN). We evaluate the LFP of the SNN, defined as LFP = �1/N��ui�t�, by
means of a FFT in order to compare the SNN output with the EEG signal analysed
in the same way. It has been shown that brain LFPs in principle have the same
spectral characteristics as EEG (Quiroga, 1998). Because the updating time for SNN
dynamics is inherently 1 ms, just for computational reasons, we employ the delays
�t in Eq. (9.9) being equal to just 1 s instead of minutes or tens of minutes. In order
to find an optimal GRN within the SNN model so that the frequency characteristics
of the LFP of the SNN model are similar to the brain EEG characteristics, we use
the following procedure.

1. Generate a population of CNGMs, each with randomly generated values of
coefficients for the GRN matrix W, initial gene expression values g�0�, initial
values of SNN parameters P�0�, and different connectivity.

2. Run each SNN over a period of time T and record the LFP.
3. Calculate the spectral characteristics of the LFP using the FFT.
4. Compare the spectral characteristics of SNN LFP to the characteristics of the

target EEG signal. Evaluate the closeness of the LFP signal for each SNN to
the target EEG signal characteristics. Proceed further according to the standard
GA algorithm to possibly find a SNN model that matches the EEG spectral
characteristics better than previous solutions.

5. Repeat steps 1 to 4 until the desired GRN and SNN model behaviour is obtained.
6. Analyse the GRN and the SNN parameters for significant gene patterns that

cause the SNN model behaviour.

Simulation Results

In Benuskova and Kasabov (2007) experimental results were presented on real
human interictal EEG data for different clinically relevant subbands over time.
These subbands are: delta (0.5–3.5 Hz), theta (3.5–7.5 Hz), alpha (7.5–12.5 Hz), beta
1 (12.5–18 Hz), beta 2 (18–30 Hz), and gamma (above 30 Hz). The average RIRs
over the whole time of simulation (i.e., T = 1 min) was calculated and used as a
fitness function for a GA optimisation. After 50 generations with six solutions in
each population we obtained the best solution. Solutions for reproduction were
being chosen according to the roulette rule and the crossover between parameter

Dynamic Modelling of Brain Functions and Cognitive Processes 299

values was performed as an arithmetic average of the parent values. We performed
the same FFT analysis as for the real EEG data with the min–max frequency =
0�1/50 Hz. This particular SNN had an evolved GRN with only 5 genes out of 16
periodically changing their expression values (s100beta, GABRB, GABRA, mGLuR3,
c-jun) and all other genes having constant expression values.

The preliminary results show that the same signal-processing techniques can be
used for the analysis of both the simulated LFP of the SNN CNGM and the real
EEG data to yield conclusions about the SNN behaviour and to evaluate the CNGM
at a gross level. With respect to our neuro-genetic approach we must emphasize
that it is still in an early developmental stage and the experiments assume many
simplifications. In particular, we would have to deal with the delays in Eq. (9.9)
more realistically to be able to draw any conclusions about real data and real
GRNs. The LFP obtained from our simplified model SNN is of course not exactly
the same as the real EEG, which is a sum of many LFPs. However LFP’s spectral
characteristics are very similar to the real EEG data, even in this preliminary
example.

Based on our preliminary experimentation, we have come to the conclusion that
many gene dynamics, i.e. many interaction matrices Ws that produce various gene
dynamics (e.g., constant, periodic, quasi-periodic, chaotic) can lead to very similar
SNN LFPs. In our future work, we want to explore statistics of plausible Ws more
thoroughly and compare them with biological data to draw any conclusions about
underlying GRNs. Further research questions are: how many GRNs would lead to
similar LFPs and what do they have in common? How can we use CNGM to model
gene mutation effects? How can we use CNGM to predict drug effects? And finally,
how can we use CNGM for the improvement of individual brain functions, such
as memory and learning?

9.5 Brain–Gene Ontology

In Chapter 7 we presented a framework for integrating ECOS and ontology, where
interaction between ECOS modelling and an evolving repository of data and
knowledge is facilitated. Here we apply this framework to a particular ontology,
brain–gene ontology (BGO; http://www.kedri.info/) (Kasabov et al., 2006b).

Gene Ontology (GO; http://www.geneontology.org/) is a general repository that
contains a large amount of information about genes across species, and their
relation to each other and to some diseases. The BGO contains specific infor-
mation about brain structures, brain functions, brain diseases, and also genes
and proteins that are related to specific brain-related disorders such as epilepsy
and schizophrenia, as well as to general functions, such as learning and memory.
Here in this ongoing research we basically focus on the crucial proteins such as
AMPA, GABA, NMDA, SCN, KCN, and CLC that are in some way controlling
certain brain functions through their direct or indirect interactions with other
genes/proteins. The BGO provides a conceptual framework and factual knowledge
that is necessary to understand more on the relationship between genes involved
during brain disorders and is the best way to provide a semantic repository of
systematically ordered concerned molecules.

300 Evolving Connectionist Systems

Fig. 9.21 The general information structure of the brain–gene ontology (BGO) (http://www.kedri.info).

Fig. 9.22 A snapshot of the brain–gene ontology BGO as implemented in Protégé, where a direct link to
PubMed and to another general database or an ontology is facilitated.

Dynamic Modelling of Brain Functions and Cognitive Processes 301

Ontological representation can be used to bridge the different notions in various
databases by explicitly specifying the meaning of and relation between fundamental
concepts. In the BGO this relation can be represented graphically, which enables
visualisation and creation of new relationships. Each instance in this ontology
map is traceable through a query language that allows us, for example, to answer
questions, such as, ‘Which genes are related to epilepsy?’

The general information structure of the BGO is given in Fig. 9.21. Figure 9.22
presents a snapshot of the BGO as implemented in Protégé, where a direct link to
PubMed and to another general database or an ontology is facilitated. The BGO
allows for both numerical and graphical information to be derived and presented,
such as shown in the Fig. 9.23 histogram of the expression of a gene GRIA1 related
to the AMPA receptor (see Table 9.2).

The BGO contains information and data that can be used for computational
neuro-genetic modelling (see the previous section). Results from CNGM experi-
ments can be deposited into the BGO using some tags to indicate how the results
were obtained and how they have been validated (e.g. in silico, in vitro, or in vivo).

9.6 Summary and Open Problems

This chapter discusses issues of modelling dynamic processes in the human brain.
The processes are very complex and their modelling requires dynamic adaptive

Fig. 9.23 A histogram of the expression of a gene GRIA1 related to the AMPA receptor (see Table 9.2) obtained
from the brain–gene ontology BGO.

302 Evolving Connectionist Systems

techniques. This chapter raises many questions and open problems that need to
be solved in the future; among them are:

1. How can neural network learning and cell development be combined in one
integrated model? Would it be possible to combine fMRI images with gene
expression data to create the full picture of the processes in the human brain?

2. How does the generic neuro-genetic principle (see the Introduction) relate to
different brain functions and human cognition?

3. Is it possible to create a truly adequate model of the human brain?
4. How can dynamic modelling help trace and understand the development of

brain diseases such as epilepsy and Parkinson’s disease?
5. How can dynamic modelling of brain activities help understand the instinct for

information as speculated in the Introduction?
6. How could precise modelling of the human hearing apparatus help to achieve

progress in the area of speech recognition systems?
7. How can we build brain–computer interfaces (see Coyle and McGinnity (2006)?

All these are difficult problems that can be attempted by using different compu-
tational methods. Evolving connectionist systems can also be used in this respect.

9.7 Further Reading

• Principles of Brain Development (Amit, 1989; Arbib, 1972, 1987, 1998, 1995,
2002; Churchland and Sejnowski, 1992; Deacon, 1988, 1998; Eriksson et al.,
1998; Freeman, 2001; Grossberg, 1982; Joseph, 1998; Purves and Lichtman, 1985;
Quartz and Sejnowski, 1997; Taylor, J. G., 1998; van Owen, 1994; Wolpert et al.,
1998; Wong, 1995)

• Similarity of Brain Functions and Neural Networks (Rolls and Treves, 1998)
• Cortical Sensory Organisation (Woolsey, 1982)
• Computational Models Based on Brain-imaging (J.G. Taylor, 1998)
• Hearing and the Auditory Apparatus (Allen, 1995; Glassberg and Moore, 1990;

Hartmann, 1998)
• Modelling Perception, the Auditory System (Abdulla and Kasabov, 2003; Kuhl,

1994; Liberman et al., 1967; Wang and Jabri, 1998)
• Modelling Visual Pattern Recognition (Fukushima, 1987; Fukushima et al., 1983);

EEG Signals Modelling (Freeman, 1987; Freeman and Skarda, 1985)
• MRI (Magnetic Resonance Images) Processing (Hall et al., 1992)
• Multimodal Functional Brain Models (Deacon, 1988, 1998; Neisser, 1987)
• Computational Brain Models (Matsumoto, 2000; Matsumoto et al., 1996; Arbib,

2002)
• Dynamic Interactive Models of Vision and Control Functions (Arbib, 1998; 2002)
• Signals, Sound, and Sensation (Hartmann, 1998)
• Learning in the Hippocampus Brain (Durand et al., 1996; Eriksson et al., 1998;

Grossberg and Merrill, 1996; McClelland et al., 1995)
• Dynamic Models of the Human Mind (Port and Van Gelder, 1995)
• Computational Neuro-genetic Modelling (Marcus, 2004; Kasabov and Benuskova,

2004; Benuskova and Kasabov, 2007; Howell, 2006)

10. Modelling the Emergence
of Acoustic Segments in Spoken
Languages

Spoken languages evolve in the human brain through incremental learning and
this process can be modelled to a certain degree with the use of evolving connec-
tionist systems. Several assumptions have been hypothesised and proven through
simulation in this chapter:

1. The learning system evolves its own representation of spoken language
categories (phonemes) in an unsupervised mode through adjusting its structure
to continuously flowing examples of spoken words (a learner does not know
in advance which phonemes are going to be in a language, nor, for any given
word, how many phoneme segments it has).

2. Learning words and phrases is associated with supervised presentation of
meaning.

3. It is possible to build a ‘lifelong’ learning system that acquires spoken languages
in an effective way, possibly faster than humans, provided there are fast
machines to implement the evolving learning models.

The chapter is presented in the following sections.

• Introduction to the issues of learning spoken languages
• The dilemma ‘innateness versus learning’, or ‘nature versus nurture’, revisited
• ECOS for modelling the emergence of acoustic segments (phonemes)
• Modelling evolving bilingual systems

The chapter uses some material published by Taylor and Kasabov (2000).

10.1 Introduction to the Issues of Learning
Spoken Languages

The task here is concerned with the process of learning in humans and how this
process can be modelled in a program. The following questions are attempted.

303

304 Evolving Connectionist Systems

• How can continuous learning in humans be modelled?
• What conclusions can be drawn in respect to improved learning and teaching

processes, especially learning languages?
• How is learning a second language related to learning a first language?

The aim is computational modelling of processes of phoneme category acquisition,
using natural spoken language as training input to an evolving connectionist
system. A particular research question concerns the characteristics of ‘optimal’
input and optimal system parameters that are needed for the phoneme categories
of the input language to emerge in the system in the least time. Also, by tracing
in a machine how the target behaviour actually emerges, hypotheses about what
learning parameters might be critical to the language-acquiring child could be
made.

By attempting to simulate the emergence of phoneme categories in the language
learner, the chapter addresses some fundamental issues in language acquisition
and inputs into linguistic and psycholinguistic theories of acquisition. It has a
special bearing on the question of whether language acquisition is driven by
general learning mechanisms, or by innate knowledge of the nature of language
(Chomsky’s Universal Grammar).

The basic methodology consists in the training of an evolving connectionist
structure (a modular system of neural networks) with Mel-scale transformations
of natural language utterances. The basic research question is whether, and to
what extent, the network will organize the input in clusters corresponding to the
phoneme categories of the input language. We will be able to trace the emergence
of the categories over time, and compare the emergent patterns with those that
are known to occur in child language acquisition.

In preliminary experiments, it may be advisable to study circumscribed aspects
of a language’s phoneme system, such as consonant–vowel syllables. Once the
system has proved viable, it will be a relatively simple matter to proceed to more
complex inputs, involving the full range of sounds in a natural language, bearing
in mind that some languages (such as English) have a relatively large phoneme
system compared to other languages (such as Maori) whose phoneme inventory
is more limited (see Laws et al. (2003)).

Moreover, it will be possible to simulate acquisition under a number of input
conditions:

• Input from one or many speakers
• Small input vocabulary versus large input vocabulary
• Simplified input first (e.g. consonant–vowel syllables) followed by phonologi-

cally more complex input
• Different sequences of input data

The research presented here is at its initial phase, but the results are expected
to contribute to a general theory of human/machine cognition. Technological
applications of the research concern the development of self-adaptive systems.
These are likely to substantially increase the power of automatic speech recognition
systems.

Modelling Acoustic Segments in Spoken Languages 305

10.2 The Dilemma ‘Innateness Versus Learning’ or ‘Nature
Versus Nurture’ Revisited

10.2.1 A General Discussion

A major issue in contemporary linguistic theory concerns the extent to which
human beings are genetically programmed, not merely to acquire language, but
to acquire languages with just the kinds of properties that they have (Pinker,
1994; Taylor and Kasabov, 2000). For the last half century, the dominant view has
been that the general architecture of language is innate; the learner only requires
minimal exposure to actual language data in order to set the open parameters given
by Universal Grammar as hypothesized by Noam Chomsky (1995). Arguments for
the innateness position include the rapidity with which all children (barring cases
of gross mental deficiency or environmental deprivation) acquire a language, the
fact that explicit instruction has little effect on acquisition, and the similarity (at a
deep structural level) of all human languages. A negative argument is also invoked:
the complexity of natural languages is such that they could not, in principle, be
learned by normal learning mechanisms of induction and abstraction.

Recently, this view has been challenged. Even from within the linguistic
mainstream, it has been pointed out that natural languages display so much
irregularity and idiosyncrasy, that a general learning mechanism has got to be
invoked; the parameters of Universal Grammar would be of little use in these cases
(Culicover et al., 1999). Moreover, linguists outside the mainstream have proposed
theoretical models which do emphasize the role of input data in language learning.
In this view, language knowledge resides in abstractions (possibly, rather low-level
abstractions) made over rich arrays of input data.

In computational terms, the contrast is between systems with a rich in-built
structure, and self-organising systems that learn from data (Elman et al., 1997).
Not surprisingly, systems that have been preprogrammed with a good deal of
language structure vastly outperform systems which learn the structure from input
data. Research on the latter is still in its infancy, and has been largely restricted
to modelling circumscribed aspects of a language, most notably, the acquisition of
irregular verb morphology (Plunkett, 1996). A major challenge for future research
will be to create self-organising systems to model the acquisition of more complex
configurations, especially the interaction of phonological, morphological, syntactic,
and semantic knowledge.

In the introductory chapter it was mentioned that learning is genetically defined;
i.e. there are genes that are associated with long-term potentiation (LTP), learning,
and memory (Abraham et al., 1993), but it is unlikely that there are genes associated
with learning languages and even less likely that there are genes associated with
particular languages, e.g. Italian, English, Bulgarian, Maori, and so on.

The focus of this chapter is the acquisition of phonology, more specifically,
the acquisition of phoneme categories. All languages exhibit structuring at the
phoneme level. We may, to be sure, attribute this fact to some aspect of the
genetically determined language faculty. Alternatively, and perhaps more plausibly,
we can regard the existence of phoneme inventories as a converging solution to two
different engineering problems. The first problem pertains to a speaker’s storage

306 Evolving Connectionist Systems

of linguistic units. A speaker of any language has to store a vast (and potentially
open-ended) inventory of meaningful units, be they morphemes, words, or fixed
phrases. Storage becomes more manageable, to the extent that the meaningful units
can be represented as sequences of units selected from a small finite inventory
of segments (the phones and the phonemes). The second problem refers to the
fact that the acoustic signal contains a vast amount of information. If language
learning is based on input, and if language knowledge is a function of heard
utterances, a very great deal of the acoustic input has got to be discarded by
the language learner. Incoming utterances have got to be stripped down to their
linguistically relevant essentials. Reducing incoming utterances to a sequence of
discrete phonemes solves this problem, too.

10.2.2 Infant Language Acquisition

Research by Peter Jusczyk (1997) and others has shown that newborn infants
are able to discriminate a large number of speech sounds, well in excess of the
number of phonetic contrasts that are exploited in the language an infant will
subsequently acquire. This is all the more remarkable inasmuch as the infant
vocal tract is physically incapable of producing adultlike speech sounds at all
(Liberman, 1967). By about six months, perceptual abilities are beginning to adapt
to the environmental language, and the ability to discriminate phonetic contrasts
that are not utilized in the environmental language declines. At the same time,
and especially in the case of vowels, acoustically different sounds begin to cluster
around perceptual prototypes, which correspond to the phonemic categories of
the target language, a topic researched by Kuhl (1994). Thus, the ‘perceptual space’
of e.g. the Japanese- or Spanish-learning child becomes increasingly different
from the perceptual space of the English- or Swedish-learning child. Japanese,
Spanish, English, and Swedish ‘cut up’ the acoustic vowel space differently, with
Japanese and Spanish having far fewer vowel categories than English and Swedish.
However, the emergence of phoneme categories is not driven only by acoustic
resemblance. Kuhl’s research showed that infants are able to filter out speaker-
dependent differences, and attend only to the linguistically significant phoneme
categories.

It is likely that adults in various cultures, when interacting with infants, modulate
their language in ways to optimise the input for learning purposes. This is not just
a question of vocabulary selection (although this, no doubt, is important). Features
of ‘child-directed speech’ include exaggerated pitch range and slower articulation
rates (Kuhl, 1994). These maximise the acoustic distinctiveness of the different
vowels, and therefore reduce the effect of co-articulation and other characteristics
of rapid conversational speech.

10.2.3 Phonemes

Although it is plausible to assume that aspects of child-directed speech facilitate
the emergence of perceptual prototypes for the different phones and phonemes of
a language’s sound system, it must be borne in mind that phoneme categories are

Modelling Acoustic Segments in Spoken Languages 307

not established only on the basis of acoustic–phonetic similarity. Phonemes are
theoretical entities, at some distance from acoustic events. As long as the child’s
vocabulary remains very small (up to a maximum of about 40–50 words), it is
plausible that each word is represented as a unique pathway through acoustic space,
each word being globally distinct from each other word. But with the ‘vocabulary
spurt’, which typically begins around age 16–20 (Bates and Goodman, 1999), this
strategy becomes less and less easy to implement. Up to the vocabulary spurt, the
child has acquired words slowly and gradually; once the vocabulary spurt begins,
the child’s vocabulary increases massively, with the child sometimes adding as
many as ten words per day to his or her store of words. Under these circumstances,
it is highly implausible that the child is associating a unique acoustic pattern with
each new word. Limited storage and processing capacity requires that words be
broken down into constituent elements, i.e. the phonemes. Rather than learning an
open-ended set of distinct acoustic patterns, one for each word (tens of thousands
of them!), the words come to be represented as a linear sequence of segments
selected from an inventory of a couple of dozen distinct elements.

The above is used as a principle for the experiments conducted later in this
chapter.

Phoneme Analysis

Linguists have traditionally appealed to different procedures for identifying the
phones and phonemes of a language. One of them is the principle of contrast.
The vowels [i:] and [I] are rather close (acoustically, perceptually, and in terms
of articulation). In English, however, the distinction is vital, because the sounds
differentiate the words sheep and ship (and countless others). The two sounds are
therefore assigned to two different phonemes. The principle of contrast can be
used in a modelling system through feedback from a semantic level, back to the
acoustic level of modelling.

10.3 ECOS for Modelling the Emergence of Phones
and Phonemes

10.3.1 Problem Definition

We can conceptualise the sounding of a word as a path through multidimensional
acoustic space. Repeated utterances of the same word will be represented by a
bundle of paths that follow rather similar trajectories. As the number of word
types is increased, we may assume that the trajectories of different words will
overlap in places; these overlaps will correspond to phoneme categories.

It is evident that an infant acquiring a human language does not know, a priori,
how many phoneme categories there are going to be in the language that she or
he is going to learn, nor, indeed, how many phonemes there are in any given
word that the child hears. (We should like to add: the child learner does not
know in advance that there are going to be such things as phonemes at all! Each

308 Evolving Connectionist Systems

word simply has a different global sound from every other word). A minimum
expectation of a learning model is that the language input will be analysed in
terms of an appropriate number of phonemelike categories.

The earlier observations on language acquisition and phoneme categories
suggest a number of issues that need to be addressed while modelling phoneme
acquisition:

1. Does learning require input which approximates the characteristics of
‘motherese’ with regard to careful exaggerated articulation, also with respect to
the frequency of word types in the input language?

2. Does phoneme learning require lexical–semantic information? The English
learner will have evidence that sheep and ship are different words, not just
variants of one and the same word, because sheep and ship mean different
things. Applying this to our learning model, the question becomes: do input
utterances need to be classified as tokens of word types?

3. Critical mass: it would be unrealistic to expect stable phoneme categories to
emerge after training on only a couple of acoustically nonoverlapping words.
We might hypothesize that phonemelike organisation will emerge only when a
critical mass of words has been extensively trained, such that each phoneme
has been presented in a variety of contexts and word positions. First language
acquisition research suggests that the critical mass is around 40–50 words.

4. The speech signal is highly redundant in that it contains vast amounts of
acoustic information that is simply not relevant to the linguistically encoded
message. We hypothesize that a learning model will need to be trained on input
from a variety of speakers, all articulating the ‘same’ words. The system must
be introduced to noise, in order for noise to be ignored during the system’s
operation.

5. Can the system organize the acoustically defined input without prior knowledge
of the characteristics of the input language? If so, this would be a significant
finding for language acquisition research! Recall that children learning their
mother tongue do not know in advance how many phoneme categories there
are going to be in the language, nor even, indeed, that language will have a
phoneme level of organization.

6. What is the difference, in terms of acoustic space occupied by a spoken language,
between simultaneous acquisition of two languages versus late bilingualism (see
Kim et al., 1997)? Will the acquisition of the second language show interference
patterns characteristic of human learners?

Underlying our experiments is the basic question of whether the system can
organize the acoustic input with minimal specification of the anticipated output.
In psycholinguistic terms, this is equivalent to reducing to a minimum the contri-
bution of innate linguistic knowledge. In genetic terms, this means that there are
no genes associated with learning languages and learning specific languages in
particular. Indeed, our null hypothesis will be that phoneme systems emerge as
organizational solutions to massive data input. If it should turn out that learning
can be modelled with minimal supervision, this would have very significant conse-
quences for linguistic and psycholinguistic theories of human language learning.

Modelling Acoustic Segments in Spoken Languages 309

10.3.2 Evolving Clustering for Modelling the Emergence
of Phones – A Simple Example

The evolving clustering method ECM from Chapter 2 is used here with inputs
that represent features taken from a continuous stream of spoken words. In the
experiment shown in Fig. 10.1 frames were extracted from a spoken word ‘eight’,

12

3

4

5

67

8

910 11
1213

14

15
16

17

18

19
20

21
22

23

2425

26
27

28

29
30

3132

33

34
3536

37
38

39

40
41424344

4546
47

48

49 50
5152

53

91

92

93

94

95

96

97

98

99

100

101
102

103
104

105

106

107108109
110

111
112

113

114

115116

117
118

119

120

121 122
123

124
125

126

127128129
130

131132
133134

135

136137
138

139

140
141

142

143

144

145146147
148149

150

151

152153

154

155

156157

158159
160161

162

163
164

165166

167

168

169
170171

172
173

54

55

56

57
58

59

60

61

62

63
64

65 66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

1

2

3

0 20 40 60 80 100 120 140 160
Examples

0

2

4

6

8

10

0 20 40 60 80 100 120 140 160 180
–10

0

10

20

30

40

50

60

70

80

Fig. 10.1 Experimental results with an ECM model for phoneme acquisition, a single pronunciation of the word
‘eight’. From top to bottom: (a) the two-dimensional input space of the first two Mel scale coefficients of all
frames taken from the speech signal of the pronounced digit ‘eight’ and numbered with the consecutive time
interval, and also the evolved nodes (denoted with larger font) that capture each of the three phonemes of
the speech input: /silence/, /ei/, /t/, /silence/; (b) the time of the emergence of the three ECM nodes: cluster
centres; (c) all 78 element Mel-vectors of the word ‘eight’ over time (175 time frames, each 11.6 msec long,
with 50% overlap between the frames).

310 Evolving Connectionist Systems

in a phonetic representation it would be: /silence/ /ei/ /t/ /silence/. Three time-
lag feature vectors of 26 Mel-scale coefficients each are used, from a window of
11.6 ms, with an overlap of 50% (see Fig. 10.1c).

A cluster structure was evolved with the use of ECM. Each new input vector
from the spoken word was either associated with an existing rule node that was
modified to accommodate these data, or a new rule node was created. All together,
three rule nodes were created (Fig. 10.1b). After the whole word was presented
the nodes represented the centres of the phoneme clusters without the concept of
phonemes being presented to the system (Fig. 10.1a). The figures show clearly that
three nodes were evolved that represented the stable sounds as follows: frames
0–53 and 96–170 were allocated to rule node 1 that represented /silence/; frames
56–78 were allocated to rule node 2 that represented the phoneme /ei/; frames
85–91 were allocated to rule node 3 that represented the phoneme /t/; the rest of
the frames represented transitional states, e.g. frames 54–55 the transition between
/silence/ and /ei/, frames 79–84, the transition between /ei/ and /t/, and frames
92–96, the transition between /t/ and /silence/, were allocated to some of the closest
rule nodes.

If in the ECM simulation a smaller distance threshold Dthr had been used,
there would have been more nodes evolved to represent short transitional sounds
along with the larger phone areas. When more pronunciations of the word ‘eight’
are presented to the ECM model the model refines the phoneme regions and the
phoneme nodes.

The ECM, ESOM, and EFuNN methods from Chapter 2 and Chapter 3 allow for
experimenting with different strategies of elementary sound emergence:

1. Increased sensitivity over time
2. Decreased sensitivity over time
3. Single language sound emergence
4. Multiple languages presented one after another
5. Multiple languages presented simultaneously (alternative presentation of

words from different languages)
6. Aggregation within word presentation
7. Aggregation after a whole word is presented
8. Aggregation after several words are presented
9. The effect of alternative presentation of different words versus the effect of

one word presented several times, and then the next one is presented, etc.
10. The role of the transitional sounds and the space they occupy
11. Using forgetting in the process of learning
12. Other emerging strategies

10.3.3 Evolving the Whole Phoneme space of (NZ) English

To create a clustering model for New Zealand English, data from several speakers
from the Otago Speech Corpus (http://translator.kedri.info) were selected to train
the model. Here, 18 speakers (9 Male, 9 Female) each spoke 128 words three
times. Thus, approximately 6912 utterances were available for training. During
the training, a word example was chosen at random from the available words.

Modelling Acoustic Segments in Spoken Languages 311

The waveform underwent a Mel-scale cepstrum (MSC) transformation to extract
12 frequency coefficients, plus the log energy, from segments of approximately
23.2 ms of data. These segments were overlapped by 50%. Additionally, the delta,
and the delta–delta values of the MSC coefficients and log energy were extracted,
for an input vector of total dimensionality 39.

The ECM system was trained until the number of cluster nodes became constant
for over 100 epochs. A total of 12,000 epochs was performed, each on one of the
12,000 data examples. The distance threshold Dthr parameter of the ECM was set
to 0.15.

Figure 10.2 shows: (a) the connections of the evolved ECM system (70 nodes
are evolved that capture 70 elementary sounds, the columns) from spoken words
presented one after another, each frame of the speech signal being represented
by 39 features (12 MSC and the power, their delta features, and the delta–delta
features, the rows). The darker the colour of a cell, the higher its value is; (b) the
evolved cluster nodes and the trajectory of the spoken word ‘zero’ projected in the
MSC1–MSC2 input space; (c) the trajectory of the word ‘zero’ shown as a sequence
of numbered frames, and the labelled cluster nodes projected in the MSC1–MSC2
input space.

Fig. 10.2 (a) The connections of the evolved ECM model (there are no fuzzified inputs used) from spoken
words of NZ English. The 70 cluster nodes are presented on the x-axis and the 39 input variables are presented
on the y-axis. The words were presented one after another, each frame of the speech signal being presented
by 39 features: 12 MSC and the power, their delta features, and their delta–delta features. The darker the
colour is, the higher the value. It can be seen, for example, that node 2 gets activated for high values
of MSC 1; (Continued overleaf)

312 Evolving Connectionist Systems

(b)

(c)

12
3

4
5
6

78

9
1011

12

13
14

15
1617
181920

21
22

23 24
25

26 27

28293031
32

3334
35
363738

3940414243
44

4546
4748
495051

52

53545556
575859

6061 6263
64

65

6667
68

69
70

71727374
75

76

7778
7980

81
8283

1

2

3

4

5
67

8
9 10

11

12
13

14

15

16

1718

19

20

21
22

23

24

25

26

27

28 29

30

31

32
33

34

35

36

37

3839

40

41

42

43
44

45
46

47

48

49

50

51
52

53

54

55

56

575859

60
61

6263

6465

66

67

68

69

70

Fig. 10.2 (continued) (b) the evolved 70 rule nodes in the ECM model from (a) and the trajectory of the
word ‘zero’ projected in the MSC1–MSC2 input space; (c) the trajectory of the word ‘zero’ from (b) with the
consecutive time frames being labelled with consecutive numbers: the smaller font numbers) and the emerged
nodes labelled in a larger font according to their time of emergence, all projected in the MSC1–MSC2 input
space.

Figure 10.3 shows three representations of a spoken word ‘zero’ from the corpus.
Firstly, the word is viewed as a waveform (Fig. 10.3, middle). This is the raw signal
as amplitude over time. The second view is the MSC space view. Here, 12 frequency
components are shown on the y-axis over time on the x-axis (Fig. 10.3, bottom).
This approximates a spectrogram. The third view (top) shows the activation of each
of the 70 rule nodes (the rows) over time. Darker areas represent a high activation.
Additionally, the winning nodes are shown as circles. Numerically, these are: 1, 1,
1, 1, 1, 1, 2, 2,2, 2, 22, 2, 2, 11, 11, 11,11, 11, 24, 11, 19, 19, 19, 19, 15, 15, 16, 5,
5, 16, 5, 15, 16, 2, 2, 2, 11, 2, 2, 1, 1, 1. Some further testing showed that recog-
nition of words depended not only on the winning node, but also on the path of the
recognition. Additionally, an n-best selection of nodes may increase discrimination.

Modelling Acoustic Segments in Spoken Languages 313

Fig. 10.3 ECM representation of a spoken word ‘zero’: (upper figure) the activation of the nodes of the evolved
ECM model from Fig. 10.2 (nodes from 1 to 70 are shown on the y-axis) when the word was propagated
through it (time is presented on the x-axis); (middle figure) the wave form of the signal; (bottom figure)
x-axis represents time, and y-axis represents the value of the MSC from 1 to 12 (the darker the colour is, the
higher the value).

Trajectory Plots

The trajectory plots, shown in Figs. 10.4 through 10.7, are presented in three of
the total 39 dimensions of the input space. Here, the first and seventh MSC are
used for the x and y coordinates. The log energy is represented by the z-axis.
A single word, ‘sue’, is shown in Fig. 10.4. The starting point is shown as a square.
Several frames represent the hissing sound, which has low log energy. The vowel
sound has increased energy, which fades out toward the end of the utterance. Two
additional instances of the same word, spoken by the same speaker, are shown in

314 Evolving Connectionist Systems

0.2
0.3

0.4
0.5

0.6
0.7

0.4

0.45

0.5

0.55

0.5

0.6

0.7

0.8

0.9

5

50
49

17
64

31

65

8

53

68

56

26

45
35

46
37

15

16

51
67
29

11
62

23

30

27
52

36

42

4114

24

55

25

54

19

40

21

38

28

60
34

39

32

22

33

10

9

69

2

63

Fig. 10.4 Trajectory of a spoken word ‘sue’, along with the 70 rule nodes of the evolved ECM model shown
in the 3D space of the coordinates MS1–MS7–log E (Taylor et al., 2000).

0.2
0.3

0.4
0.5

0.6
0.7

0.4

0.5

0.6

0.6

0.7

0.8

0.9

4

59

12
47

18

20
48

3

57

44

17
64

58

49
50

68

53
26

31
8

56

65

35

16

45

15

46

51

29

67
27

62
11

37

52
30

36

23
41

42

55

54
24

19

25

14

21

43

28

40

60

32

38

33

34

22

39

10

69

9

63

2

Fig. 10.5 Two utterances of the word ‘sue’ pronounced by the same speaker as in Fig. 10.4, presented along
with the 70 rule nodes of the evolved ECM model in the 3D space of MS1–MS7–log E (see Taylor et al. (2000)).

Modelling Acoustic Segments in Spoken Languages 315

0.2
0.3

0.4
0.5

0.6
0.7

0.4
0.45

0.5
0.55

0.6

0.5

0.6

0.7

0.8

0.9

2
48

18

3

57

44

17

58

64

49
50

68

53

31

26

8

56

65

35

45
46

15

16

51

29
67

37

62

11

27

30
52

36

23

42

41

55

54
24

19

25

14

21

43

40

28

38

60

32
34

33

22

39

10

69

9
2

63

Fig. 10.6 Trajectories of spoken words ‘sue’ and ‘nine’ by the same speaker presented in a 3D space
MS1–MS7–log E, along with the 70 rule nodes of the evolved ECM model (Taylor et al., 2000).

0.2
0.3

0.4
0.5

0.6
0.7

0.4

0.45

0.5

0.55

0.5

0.6

0.7

0.8

0.9

4

3

18

57
44

58

17

50
49

64

31

53

68

8

65

26

5635
45

46

15

37

16

5167
29

11
62

27

30

23

52

36

42

41
14

55

24
54

25

19

21

40

38

28

60

34

32

39

22

33

43

10

69

9
2

63

Fig. 10.7 Trajectories of the words ‘sue’ and ‘zoo’ along with the 70 rule nodes of the evolved ECM model in
the MS1–MS7–log E space (Taylor et al., 2000).

316 Evolving Connectionist Systems

Fig. 10.5. Here, a similar trajectory can be seen. However, the differences in the
trajectories represent the intraspeaker variation. Interword variability can be seen
in Fig. 10.6, which shows the ‘sue’ from Fig. 10.4 (dotted line) compared with the
same speaker uttering the word ‘nine’. Even in the three-dimensional space shown
here, the words are markedly different. The final trajectory plot (Fig. 10.7) is of
two similar words, ‘sue’ (dotted line) and ‘zoo’ (solid line) spoken by the same
speaker. Here, there is a large overlap between the words, especially in the section
of the vowel sound.

10.3.4 A Supervised ECOS Model for the Emergence
of Word Clusters Based on Both Auditory Traces
and Supplied (Acquired) Meaning

The next step of this project is to develop a supervised model based on both
ECM for phoneme cluster emergence, and EFuNN for word recognition. After the
ECM is evolved (it can still be further evolved) a higher-level word recognition
module is developed where inputs to the EFuNN are activated cluster nodes from
the phoneme ECM over a period of time. The outputs of the EFuNN are the
words that are recognized. The number of words can be extended over time thus
creating new outputs that are allowable in an EFuNN system (see Chapter 3).
A sentence recognition layer can be built on top of this model. This layer will
use the input from the previous layer (a sequence of recognized words over
time) and will activate an output node that represents a sentence (a command,
a meaningful expression, etc.). At any time of the functioning of the system,
new sentences can be introduced to the system which makes the system evolve
over time.

10.4 Modelling Evolving Bilingual Systems

10.4.1 Bilingual Acquisition

Once satisfactory progress has been made with modelling phoneme acquisition
within a given language, a further set of research questions arises concerning the
simulation of bilingual acquisition. As pointed out before, we can distinguish two
conditions:

1. Simultaneous bilingualism. From the beginning, the system is trained simulta-
neously with input from two languages (spoken by two sets of speakers; Kim
et al. (1997)).

2. Late bilingualism. This involves training an already trained system with input
from a second language.

It is well-known that children manage bilingual acquisition with little apparent
effort, and succeed in speaking each language with little interference from the

Modelling Acoustic Segments in Spoken Languages 317

other. In terms of an evolving system, this means that the phoneme representations
of the two languages are strictly separated. Even though there might be some
acoustic similarity between sounds of one language and sounds of the other, the
distributions of the sounds (the shape of the trajectories associated with each of
the languages) will be quite different.

Late acquisition of a second language, however, is typically characterized by
interference from the first language. The foreign language sounds are classified
in terms of the categories of the first language. (The late bilingual will typically
retain a ‘foreign accent’, and will ‘mishear’ second-language utterances.) In
terms of our evolving system, there will be considerable overlap between the
two languages; the acoustic trajectories of the first language categories are so
entrenched, that second language utterances will be forced into the first language
categories.

The areas of the human brain that are responsible for the speech and
the language abilities of humans evolve through the whole development of
an individual (Altman, 1990). Computer modelling of this process, before its
biological, physiological, and psychological aspects have been fully discovered, is
an extremely difficult task. It requires flexible techniques for adaptive learning
through active interaction with a teaching environment.

It can be assumed that in a modular spoken language evolving system, the
language modules evolve through using both domain text data and spoken infor-
mation data fed from the speech recognition part. The language module produces
final results as well as a feedback for adaptation in the previous modules. This
idea is currently being elaborated with the use of ECOS.

10.4.2 Modelling Evolving Elementary Acoustic Segments (Phones)
of Two Spoken Languages

The data comprised 100 words of each Māori and English (see Laws et al., 2003).
The same speaker was used for both datasets. One spoken word at a time was
presented to the network, frame by frame. In every case, the word was preprocessed
in the following manner. A frame of 512 samples was transformed into 26 Mel-
scale cepstrum coefficients (MSCC). In addition, the log energy was also calculated.
Consecutive frames were overlapped by 50%.

For the English data, a total of 5725 frames was created. For the Māori data,
6832 frames were created. The words used are listed below. The English words
are one and two syllables only. The Māori words are up to four syllables, which
accounts for the slightly larger number of frames.

English Words

ago, ahead, air, any, are, auto, away, baby, bat, bird, boo, book, boot, buzz, card,
carrot, choke, coffee, dart, day, dead, die, dog, dove, each, ear, eight, ether, fashion,
fat, five, four, fur, go, guard, gut, hat, hear, how, jacket, joke, joy, judge, lad, ladder,
leisure, letter, loyal, mad, nine, nod, one, ooze, other, over, palm, paper, pat, pea,

318 Evolving Connectionist Systems

peace, pure, push, rather, recent, reef, riches, river, rod, rouge, rude, school, seven,
shoe, shop, sing, singer, six, sue, summer, tan, tart, teeth, teethe, that, thaw, there,
three, tour, tragic, tub, two, utter, vat, visit, wad, yard, yellow, zero, zoo

Māori Words

ahakoa, ahau, āhei, ahiahi, āhua, āhuatanga, ake, ako, aku, ākuanei, anake, anei,
anō, āpōpō, aroha, ātāhua, atu, atua, aua, auē, āwhina, ēhara, ēnā, ēnei, engari, ērā,
ētahi, hanga, heke, hine, hoki, huri, iho, ihu, ika, ināianei, ingoa, inu, iwa, kaha,
kaiako, kete, kino, koti, kura, mahi, mea, miraka, motu, muri, nama, nei, ngahere,
ngākau, ngaro, ngāwari, ngeru, noa, nōu, nui, ōku, oma, ōna, one, oneone, ono,
ora, oti, otirā, pakaru, pekepeke, pikitia, poti, putiputi, rangatira, reri, ringaringa,
rongonui, rūma, tahuri, tēnā, tikanga, tokorua, tuna, unu, upoko, uri, uta, utu,
waha, waiata, wero, wha, whakahaere, whakapai, whanaunga, whero, whiri, wiki,
wūru

Three cases were of interest, to be compared and contrasted. Experiment 1
involved presenting all the English speech samples to the network, followed by
all the Māori speech. Experiment 2 was similar, except that the Māori speech was
presented first. Both English and Māori speech data were used for Experiment 3,
shuffled together.

The evolving clustering method ECM was used for this experiment (Chapter 2).
A distance threshold (Dthr) of 0.155 was used for all experiments.

Results

Table 10.1 shows the number of clusters resulting from each experiment. The
English data alone created 54 clusters and an additional 14 were created by the
Māori data used after the English data. The Māori data alone created 49 clusters.
The addition of the English data produced 15 more clusters. Both languages
presented together and a mixed order produced slightly more clusters than either
language presented separately.

The spoken word ‘zoo’ was presented to the evolved three models. The activation
of the nodes is presented as trajectories in the 2D PCA space in Figs. 10.8
through 10.10.

Table 10.1 Number of clusters created for each experiment of the bilingual English
and Maori acoustic evolving system based on the ECM evolving clustering method.

Number of first
language clusters

Total number
of clusters

Difference

English then Māori 54 68 14
Māori then English 49 64 15
Both languages − 70 −

Modelling Acoustic Segments in Spoken Languages 319

–1.2 –1 –0.8 –0.6 –0.4 –0.2

–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

1

2

3
4

5

6

7

8

9

10

11

12

13
14

15

16
17

18

19
20

21

22

23
24

25

26

27

28

29
30

31

32

33

34

35

36

37

3839

40

41

42

43
44

45

46

47

48

49

50

51

52

53

54

55

56

57

58
59

60
61

62

63
64

65
66 67

68

26

Fig. 10.8 The projection of the spoken word ‘zoo’ in English and Maori PCA space (see Laws et al., 2003).

–1.2 –1 –0.8 –0.6 –0.4 –0.2 0

–0.6

–0.4

–0.2

0

0.2

0.4

1
2

3

4

5

6

7

8

9

10
11

12

13

14

15

16

17

18

19
20

21

22

23
24 25

26

2728

29

3031

32

33

34

35
36

37

38

39

40

41

42

43

44

45
46

47

48
49

50

51

52

53

54

55

56
57

58

59

60

61

62

63
64

Fig. 10.9 The projection of the spoken word ‘zoo’ in Maori + English PCA space (Laws et al., 2003).

320 Evolving Connectionist Systems

–1.4 –1.2 –1 –0.8 –0.6 –0.4 –0.2

–0.6

–0.4

–0.2

0

0.2

0.4

1

2
3

4

5

6

7

8

9 10
11 12

13

14

15

16
17

18

19

20

21

22

23

24

25

26

27
28

29

30

31

32

33

34

35

36

37

38

39
4041

42

43

44

45

46

47
48

49

50

51

52

53
54

5556

57

58

5960

61

62

63

64

65

66

6768

69

70

Fig. 10.10 The projection of the spoken word ‘zoo’ in a mixed English and Maori PCA space (Laws et al.,
2003).

As all the above visualisations were done in a PCA 2D space, it is important to
know the amount of variance accounted for by the first few PCA dimensions. This
is shown in Table 10.2 (Laws et al., 2003).

Different nodes in an evolved bilingual system get activated differently when
sounds and words from each of the two languages are presented as analysed in
Fig. 10.11. It can be seen that some nodes are used in only one language, but other
nodes get activated equally for the two languages (e.g. node #64).

The number of nodes in an evolving system grows with more examples presented
but due to similarity between the input vectors, this number would saturate after
a certain number of examples are presented (Fig. 10.12).

Table 10.2 Variance accounted for by various numbers
of PCA dimensions (Laws et al., 2003).

PCA
Dimensions

Variance for each language

English Māori Both

1 0�1216 0�1299 0�1084
2 0�1821 0�1956 0�1643
3 0�2229 0�2315 0�2024
4 0�2587 0�2639 0�2315
5 0�2852 0�2940 0�2552
6 0�3081 0�3172 0�2755

Modelling Acoustic Segments in Spoken Languages 321

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Rule Nodes (1 to 34)

Mäori
NZ English

0

200

400

600

800

1000

1200

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

Rule Nodes (35 to 70)

Mäori
NZ English

Fig. 10.11 The activation of cluster (rule) nodes of the evolving system evolved through a mixed presentation
of both English and Maori, when new words from both languages are presented (Laws et al., 2003).

10.5 Summary and Open Problems

The chapter presents one approach to modelling the emergence of acoustic clusters
related to phones in a spoken language, and in multiple spoken languages, namely
using ECOS for the purpose of modelling.

Modelling the emergence of spoken languages is an intriguing task that has
not been solved thus far despite existing papers and books. The simple evolving
model that is presented in this chapter illustrates the main hypothesis raised
in this material, that acoustic features such as phones are learned rather than

322 Evolving Connectionist Systems

Fig. 10.12 The number of cluster nodes (y-axis) over learning frames (x-axis) for mixed English and Maori
evolving acoustic system based on ECM (Laws et al., 2003).

inherited. The evolving of sounds, words, and sentences can be modelled in a
continuous learning system that is based on evolving connectionist systems and
ECOS techniques.

The chapter attempted to answer posed open problems, but these problems are
still to be addressed and other problems arose as listed below:

1. How can continuous language learning be modelled in an intelligent machine?
2. What conclusions can be drawn from the experimental results shown in this

chapter to improve learning and teaching processes, especially with respect to
languages?

3. How learning a third language relates to learning a first and a second language.
4. Is it necessary to use in the modelling experiments input data similar in charac-

teristics to those of ‘motherese’, with respect to both vocabulary selection and
articulation?

5. Can a system self-organise acoustic input data without any prior knowledge of
the characteristics of the input language?

6. Is it possible to answer the dilemma of innateness versus learning in respect
to languages through attempting to create a genetic profile of a language
(languages) similar to the gene expression profiles of colon cancer and
leukaemia presented in Chapter 8?

7. How can we prove or disprove the following hypotheses? There are no specific
genes associated with learning the English language, and no genes associated
with the Arabic language, and no genes associated with any particular language.
Can we use the microarray technology presented in Chapter 8 or a combined
microarray technology with fMRI imaging (see Chapter 9)?

8. How does the generic neuro-genetic principle (see Chapter 1 and Chapter 7)
relate to learning languages?

9. How is language learning related to the instinct for information (see Chapter 7)?

Modelling Acoustic Segments in Spoken Languages 323

10.6 Further Reading

For further details of the ideas discussed in this chapter, please refer to Taylor
and Kasabov (2000), Laws et al., 2003.

More on the research issues in the chapter can be found in other references,
some of them listed below.

• Generic Readings about Linguistics and Understanding Spoken Languages
(Taylor, 1995, 1999; Segalowitz, 1983; Seidenberg, 1997)

• The Dilemma ‘Innateness Versus Learned’ in Learning Languages (Chomsky,
1995; Lakoff and Johnson, 1999; Elman et al., 1997)

• Learning Spoken Language by Children (Snow and Ferguson, 1977; MacWhinney
et al., 1996; Juszyk, 1997)

• The Emergence of Language (Culicover, 1999; Deacon, 1988; Pinker, 1994; Pinker
and Prince, 1988)

• Models of Language Acquisition (Parisi, 1997; Regier, 1996)
• Using Evolving Systems for Modelling the Emergence of Bilingual English–Maori

Acoustic Space (Laws et al., 2003)
• Modelling the Emergence of New Zealand Spoken English (Taylor and Kasabov,

2000)

11. Evolving Intelligent Systems
for Adaptive Speech Recognition

Speech and signal-processing technologies need new methods that deal with the
problems of noise and adaptation in order for these technologies to become
common tools for communication and information processing. This chapter is
concerned with evolving intelligent systems (EIS) for adaptive speech recognition.
An EIS system can learn continuously spoken phonemes, words, and phrases.
New words, pronunciations, and languages can be introduced to the system in an
incremental adaptive way.

The material is presented in the following sections.

• Introduction to adaptive speech recognition
• Speech signal analysis and feature selection
• A framework of EIS for adaptive speech recognition
• Adaptive phoneme-based speech recognition
• Adaptive whole word and phrase recognition
• Adaptive intelligent human–computer interfaces
• Exercise
• Summary and open problems
• Further reading

11.1 Introduction to Adaptive Speech Recognition

11.1.1 Speech and Speech Recognition

Speech recognition is one of the most challenging applications of signal processing
(Cole et al., 1995). Some basic notions about speech and speech recognition systems
are given below.

Speech is a sequence of waves that are transmitted over time through a medium
and are characterised by some features; among them are intensity and frequency.
Speech is perceived by the inner ear in humans (see Chapter 9). It activates oscil-
lations of small elements in the inner ear, which oscillations are transmitted to
a specific part of the brain for further processing. The biological background
of speech recognition is used by many researchers to develop humanlike
automatic speech recognition systems (ASRS), but other researchers take other
approaches.

325

326 Evolving Connectionist Systems

Speech can be represented on different scales:

• Time scale, which representation is called waveform representation.
• Frequency scale, which representation is called spectrum.
• Both time and frequency scale; this is the spectrogram of the speech signal.

The three factors which provide the easiest method of differentiating speech sounds
are the perceptual features of loudness, pitch, and quality. Loudness is related to
the amplitude of the time domain waveform, but it is more correct to say that it
is related to the energy of the sound (also known as its intensity). The greater the
amplitude of the time domain waveform, the greater is the energy of the sound and
the louder the sound appears. Pitch is the perceptual correlate of the fundamental
frequency of the vocal vibration of the speaker organ.

The quality of a sound is the perceptual correlate of its spectral content. The
formants of a sound are the frequencies where it has the greatest acoustic energy.
The shape of the vocal tract determines which frequency components resonate.
The shorthand for the first formant is F1, for the second is F2, and so on. The
fundamental frequency is usually indicated by F0.

A spectrogram of a speech signal shows how the spectrum of speech changes
over time. The horizontal axis shows time and the vertical axis shows frequency.
The colour scale (the grey scale) shows the energy of the frequency components.

The fundamental difficulty of speech recognition is that the speech signal
is highly variable due to different speakers, different speaking rates, different
contexts, and different acoustic conditions. The task is to find which of the varia-
tions are most relevant for an ASRS (Lee et al., 1993).

There are a great number of factors which cause variability in speech such as the
speaker, the context, and the environment. The speech signal is very dependent
on the physical characteristics of the vocal tract, which in turn are dependent on
age and gender. The country of origin of the speaker and the region in the country
the speaker is from can also affect the speech signal. Different accents of English
can mean different acoustic realizations of the same phonemes.

There are variations of the main characteristics of speech over time within the
same sound, say the sounding of the phoneme /e/. An example is given in Fig. 11.1,
where different characteristics of a pronounced phoneme /e/ by a female speaker
of New Zealand English are shown.

There can also be different rhythm and intonation due to different accents. If
English is the second language of a speaker, there can be an even greater degree
of variability in the speech (see Chapter 10).

The same speakers can show variability in the way they speak, depending on
whether it is a formal or informal situation. People speak precisely in formal
situations and imprecisely in informal situations because they are more relaxed.
Therefore the more familiar a speaker is with a computer speech recognition
system, the more informal their speech becomes, and the more difficult for the
speech recognition systems to recognise the speech. This could pose problems for
speech recognition systems if they do not continually adjust.

Co-articulation effects cause phonemes to be pronounced differently depending
on the word in which they appear; words are pronounced differently depending
on the context; words are pronounced differently depending on where they lie in

EIS for Adaptive Speech Recognition 327

Phoneme /e/ Female 172

1

0

–1

40

20

0

1
0

Frequency (Hz)

0 5000 10000

105

k
100 101 102 103

1
0

–1

10–1

1
0

–1 –1

Time (ms)

Magnitude

0 10 20 30 40 50 60 70 80 90 100

x(
t +

 2
)

H
is

to
gr

am

x(t + 1) x(t)
L

(k
)

10–5

100

Sp
ec

tr
um

Fig. 11.1 Some of the characteristics of a pronounced English phoneme /e/ by a female speaker (data are
taken from the Otago Speech Corpus, sample #172: (http://transaltor.kedri.info/).

a sentence due to the degree of stress placed upon them. In addition, the speaking
rate of the speaker can cause variability in speech. The speed of speech varies
due to such things as the situation and emotions of the speaker. However, the
durations of sounds in fast speech do not reduce proportionally compared to their
durations in slow speech.

11.1.2 Adaptive Speech Recognition

The variability of speech explained above requires robust and adaptive systems
that would be able to accommodate new variations, new accents, and new pronun-
ciations of speech.

The adaptive speech recognition problem is concerned with the development
of methods and systems for speaker-independent recognition with high accuracy,
able to adapt quickly to new words, new accents, and new speakers for a small,
medium, or large vocabulary of words, phrases, and sentences.

328 Evolving Connectionist Systems

Online adaptive systems perform adaptation during their operation; i.e. the
system would adapt if necessary ‘on the spot’, would learn new pronunciations
and new accents as it works, and would add new words in an online mode.

Humans can adapt to different accents of English, e.g. American, Scottish, New
Zealand, Indian. They learn and improve their language abilities during their entire
lives. The spoken language modules in the human brain evolve continuously. Can
that be simulated in a computer system, in an evolving system? We should have
in mind that every time we speak, we pronounce the same sounds of the same
language at least slightly differently.

11.1.3 A Framework of EIS for Adaptive Speech Recognition

The framework is schematically shown in Fig. 11.2. It consists of the following
modules and procedures.

• Preprocessing module
• Feature extraction module
• Pattern classification (modelling) module
• Language module
• Analysis module

The functions of some of these modules were discussed in Chapters 9 and 10,
especially the preprocessing and the feature extraction modules. In Chapter 9,

Analysis
module

Pre-
processing

Feature
Extraction Language

Model

Speech
signal ECOS

User/
environment

Class
Recognition

Adaptation

Partial
results

To higher
level
processing

User/
environment

Fig. 11.2 A block diagram of an adaptive speech recognition system framework that utilises ECOS in the
recognition part.

EIS for Adaptive Speech Recognition 329

Mel-scale coefficients, Mel-scale cepstrum coefficients, gammatone filters, and
other acoustic features were discussed.

The set of features selected depends on the organization and on the function
of the pattern classifier module (e.g. phoneme recognition, whole word recog-
nition, etc.).

The pattern (class) recognition module can be trained to recognize phonemes,
or words, or other elements of a spoken language. The vector that represents the
pronounced element is fed into the classifier module, created in advance with the
use of the general purpose adaptive learning method, such as ECOS. The ECOS
in this case allow for adaptive online learning. New words and phrases can be
added to or deleted from the system at any time of its operation, e.g. ‘go’, ‘one’,
‘connect to the Internet’, ‘start’, ‘end’, or ‘find a parking place’. New speakers can
be introduced to the system, new accents, or new languages.

In the recognition mode, when speech is entered to the system, the recognized
words and phrases at consecutive time moments are stored in a temporal buffer.
The temporal buffer is fed into a sentence recognition module where multiple-word
sequences (or sentence) are recognized.

The recognized word, or a sequence of words, can be passed to an action module
for an action depending on the application of the system.

11.2 Speech Signal Analysis and Speech Feature Selection

The feature selection process is an extremely important issue for every speech
recognition system, regardless of whether it is a phoneme-based or word-based
system (see Chapter 1).

Figure 11.1 shows a histogram of the speech signal that can be used as a feature
vector. Another popular feature set is a vector of FFT (fast Fourier transform)
coefficients (or power spectrum as shown in Fig. 11.1). FFT transforms the speech
signal from the time domain to the frequency domain. A simple program written
in MATLAB that extracts the first 20 FFT coefficients from a spoken signal (e.g.
pronounced word) is presented in Appendix B, along with a plot and a print of
these coefficients.

Many current approaches towards speech recognition systems use Mel frequency
cepstral coefficients (MCCs) vectors to represent, for example each 10–50 ms
window of speech samples, taken every 5–25 ms, by a single vector of certain
dimension (see Fig. 9.9). The window length and rate as well as the feature vector
dimension are decided according to the application task.

For many applications the most effective components of the Mel-scale features
are the first 12 coefficients (excluding the zero coefficient). MCCs are considered
to be static features, as they do not account for changes in the signal within the
speech unit (e.g. the signal sliding window, a phoneme, or a word).

Although MCCs have been very successfully used for off-line learning and static
speech recognition systems for online learning adaptive systems that need to adapt
to changes in the signal over time, a more appropriate set of features would be a
combination of static and dynamic features.

It has been shown (Abdulla and Kasabov, 2002) that the speech recognition
rate is noticeably improved when using additional coefficients representing the

330 Evolving Connectionist Systems

dynamic behaviour of the signal. These coefficients are the first and second
derivatives of the cepstral coefficients of the static feature vectors. The power
coefficients, which represent the energy content of the signal, and their first and
second derivatives, also have important roles to be included in the represen-
tation of the feature vectors. The first and second derivatives are approximated
by difference regression equations and accordingly named delta and delta–delta
coefficients or first and second deltas, respectively. The power coefficients, which
represent the power of the signal within the processed windows, are concatenated
with the Mel coefficients. The static coefficients are normally more effective in
the clean environment, whereas the dynamic coefficients are more robust in the
noisy environment. Concatenating the static coefficients with their first and second
derivatives increases the recognition rate and accounts for dynamic changes in the
signal.

This approach has some drawbacks as well. Firstly, the static coefficients will
dominate the effect of the dynamic coefficients. In this respect, a careful normali-
sation would be efficient to apply, but not a linear one, in the interval [0,1] for each
feature separately. A more appropriate one, for example, is if the delta features are
normalised in the range that is 25% of the range of the MCC, and the delta–delta
features are normalised in the range that is 50% of the range of the delta features.
Using dynamic features also increases the dimensionality of the feature vectors.
Figure 11.3 shows the power and Mel coefficients with their derivatives of the
phoneme /o/.

Other features that account for dynamic changes in the speech signal are wavelets
(see Chapter 12) and gammatone feature vectors (see Chapter 9).

It is appropriate to use different sets of features in different modules if a modular
speech recognition system is built, where a single ANN module is used for one
speech class unit (e.g. a phoneme or a word).

delta-delta (27–39)delta (14–26) static (1–13)

C
oe

ff
ic

ie
nt

 V
al

ue

Frame

Coefficient Number

Fig. 11.3 The power and 12 Mel-scale coefficients, with their first and second derivatives of a phoneme /o/
sound signal (Abdulla and Kasabov, 2002).

EIS for Adaptive Speech Recognition 331

11.3 Adaptive Phoneme-Based Speech Recognition

11.3.1 Problem Definition

Recognising phonemes from a spoken language is a difficult but important
problem. If it is correctly solved, then it would be possible to further recognize
the words and the sentences of a spoken language. The pronounced vowels and
consonants differ depending on the accent, dialect, health status, and so on of the
person.

As an illustration, Fig. 11.4 shows the difference between some vowels in
English pronounced by male speakers in the R.P. (received pronunciation) English,
Australian English, and New Zealand English, when the first and the second
formants are used as a feature space and averaged values are used. A significant
difference can be noticed between the same vowels pronounced in different dialects
(except the phoneme /I/ for the R.P. and for the Australian English: they coincide
on the diagram). In New Zealand English /I/ and /�/ are very close.

There are different artificial neural network (ANN)-based models for speech
recognition that utilise MLP, SOM, RBF networks, time-delay NN (Weibel et al.,
1989; Picone, 1993), hybrid NN and hidden Markov models (Rabiner, 1989; Trentin,
2001), and so on. All these models usually use one ANN for the classification of all
phonemes and they work in an off-line mode. The network has as many outputs
as there are phonemes.

i

i
i

I

Iu

u

u

New Zealand English
General Australian English
R.P. English

200

300

400

500

600

700

800

900

0 1000 1500 2000 2500500

F1
 f

re
qu

en
cy

 (
H

er
tz

)

F2 frequency (Hertz)

3
3

3

Fig. 11.4 Different phones of received pronunciation English, Australian English, and NZ English presented in
the 2D space of the first two formants. Same phonemes are pronounced differently in the different accents,
e.g. /I/ (Maclagan, 1982).

332 Evolving Connectionist Systems

11.3.2 Multimodel, Phoneme-Based Adaptive Speech
Recognition System

Here an approach is used where each NN module from a multimodular system
is trained on a single phoneme data (see Kasabov (1996)) and the training is in
an online mode. An illustration of this approach is given in Fig. 11.5 where four
phoneme modules are shown, each of them trained on one phoneme data with
three time lags of 26 element Mel-scale cepstrum vectors, each vector representing
one 11.6 milliseconds timeframe of the speech data, with an overlap of 50% between
consecutive timeframes.

The rationale behind this approach is that single phoneme ANN can be adapted
to different accents and pronunciations without necessarily retraining the whole
system (or the whole ANN in case of a single ANN that recognises all phonemes).
Very often, it is just few phonemes that distinguish one accent from another and
only these ANN modules need to be adjusted.

Figure 11.6 shows the activation of each of the seven ANN modules trained to
recognise different phonemes when a spoken word ‘up’ is propagated through the
whole system over time. Although the /ˆ/ phoneme ANN gets rightly activated
when the phoneme /ˆ/ is spoken, and /p/ NN gets rightly activated when the /p/
phoneme is spoken, the /h/ and /n/ phoneme ANNs gets wrongly activated during
the silence between /ˆ/ and /p/ in the word ‘up’, and the /r/ and /d/ phoneme
ANNs get wrongly activated when /p/ is spoken.

This phoneme module misactivation problem can be overcome through analysis
of the sequence of the recognised phonemes and forming the recognized word
through a matching process using a dictionary of words. In order to improve
the recognition rate, the wrongly activated phoneme NN modules can be further
trained not to react positively on the problematic for the phoneme sounds.

NN
/ω/ /ω/

NN
/∧/ /∧/

NN
/silence/

/silence/

From the
signal
processing
module
(26 MSCC)

NN
/n/

n

t

t + 1

t + 1

t + 1

t – 1

t – 1

t – 1

t + 1

t – 1
t

t

t

26

26

Fig. 11.5 Four ANN modules, each of them trained to recognize one phoneme (from Kasabov (1996), ©MIT
Press, reproduced with permission).

EIS for Adaptive Speech Recognition 333

/^/

/p/

/d/
/h/

/n/
/r/

/au/

Fig. 11.6 The activation of seven phoneme ANN modules, trained on their corresponding phoneme data, when
an input signal of a pronounced word ‘up’ is submitted. Some of the NN modules are ‘wrongly’ activated at a
time, showing the dynamical features of the phonemes.

Each of the phoneme NN modules, once trained on data of one accent, can be
further adapted to a new accent, e.g. Australian English. In order to do that, the
NN have to be of a type that allows for such adaptation. Such NN are the evolving
connectionist systems ECOS.

In one experiment a single EFuNN is used as a single phoneme recogniser.
Each EFuNN from a multimodular ECOS can be further adapted to any new
pronunciation of this phoneme (Ghobakhlou et al., 2003). One EFuNN was used
for each phoneme. Each EFuNN was further adapted to new pronunciation of this
phoneme.

11.3.3 Using Evolving Self-Organising Maps (ESOMs) as Adaptive
Phoneme Classifiers

An evolving self-organised map (ESOM; Chapter 2) is used for the classification of
phoneme data. The advantage of ESOMs as classifiers is that they can be trained
(evolved) in a lifelong mode, thus providing an adaptive, online classification
system.

Here, an ESOM is evolved on phoneme frames from the vowel benchmark
dataset from the CMU Repository (see also Robinson (1989)). The dataset consists
of 990 frames of speech vowels articulated by four male and four female speakers.
In traditional experiments 528 frames are used for training and 462 for testing
(Robinson, 1989). Here, several models of ESOM are evolved on the training data
with the following parameter values: � = 0�5; � = 0�05.

The test results of ESOM and of other classification systems on the same test data
are shown in Table 11.1. While using tenfold cross-validation on the whole dataset,
much better classification results are obtained in the ESOM models, Table 11.2.
Here � = 1�2.

When online learning is applied on the whole stream of the vowel data, every
time testing its classification accuracy on the following incoming data, the error
rate decreases with time as can be seen from Fig. 11.7.

Figure 11.7 illustrates that after a certain number of examples drawn from a closed
and bounded problem space, the online learning procedure of ECOS can converge to
a desired level of accuracy and the error rate decrease (Chapters 2, 3, 5, and 7).

334 Evolving Connectionist Systems

Table 11.1 Classification test results on the CMU vowel data with the use of different classification techniques
(Deng and Kasabov, 2000, 2003).

Classifier Number of weights % Correct best % Correct average

5-nearest neighbour with local
approximation

5808 53 —

MLP-10 231 — —
Squared MLP 363 65.1 58.5
5D growing cell structure
(Fritzke, 1994) 80 epochs

270 66

DCS-GCS (Bruske and Sommer,
1995)

216 65 60

ESOM (one epoch only) 207 65.4 61.8

Table 11.2 Tenfold cross-validation classification results on the whole vowel data set (Deng and Kasabov,
2000, 2003).

Classifier % Correct (average)

CART (Classification on a regression tree) 78.2
CART-dB 90
ESOM (average number of nodes is 233) 95.0 +/- 0.5

0 100 200 300 400 500 600 700 800 900 1000

Learning time

Error occurrence in online classification

Fig. 11.7 Error rate of an ESOM system trained in an online mode of learning and subsequent classification of
frames from the vowel benchmark dataset available from the CMU repository (see explanation in the text). The
longer the ESOM is trained on the input stream of data, the less the error rate is. The system is reaching an
error convergence (Deng and Kasabov, 2000, 2003).

11.4 Adaptive Whole Word and Phrase Recognition

11.4.1 Problem Definition

In this case, the speech signal is processed so that the segment that represents a
spoken word is extracted from the rest of the signal (usually it is separated by
silence). Extracting words from a speech signal means identifying the beginning
and the end of the spoken word.

EIS for Adaptive Speech Recognition 335

There are many problems that need to be addressed while creating a whole
word speech recognition system, for example the problems that relate to ambiguity
of speech. This ambiguity is resolved by humans through some higher-level
processing.

Ambiguity can be caused by:

• Homophones: Words with different spellings and meanings but that sound the
same (e.g. ‘to, too, two’ or ‘hear, hair, here’). It is necessary to resort to a higher
level of linguistic analysis for distinction.

• Word boundaries: Extracting whole words from a continuous speech signal may
lead to ambiguities; for example /greiteip/ could be interpreted as ‘grey tape’
or ‘great ape’. It is necessary to resort to a higher-level linguistic knowledge to
properly set the boundaries.

• Syntactic ambiguity: This is the ambiguity arising before all the words of a
phrase or a sentence are properly grouped into their appropriate syntactic units.
For example, the phrase ‘the boy jumped over the stream with the fish’ means
either the boy with the fish jumped over the stream, or the boy jumped over
the stream with a fish in it. The correct interpretation requires more contextual
information.

All speech recognition tasks have to be constrained in order to be solved. Through
placing constraints on the speech recognition system, the complexity of the speech
recognition task can be considerably reduced. The complexity is basically affected
by:

1. The vocabulary size and word complexity. Many tasks can be performed with
the use of a small vocabulary, although ultimately the most useful systems will
have a large vocabulary. In general the vocabulary size of a speech recognition
system can vary as follows:.

• Small, tens of words
• Medium, hundreds of words
• Large, thousands of words
• Very large, tens of thousands of words

2. The format of the input speech data entered to the system, that is: Isolated
words (phrases)

• Connected words; this represents fluent speech but in a highly constrained
vocabulary, e.g. digit dialling

• Continuous speech

3. The degree of speaker dependence of the system:

• Speaker-dependent (trained to the speech patterns of an individual user)
• Multiple speakers (trained to the speech patterns of a limited group of people)
• Speaker-independent (such a system could work reliably with speakers who

have never or seldom used the system)

336 Evolving Connectionist Systems

Sometimes a form of task constraint, such as formal syntax and formal semantics,
is required to make the task more manageable. This is because if the vocab-
ulary size increases, the possible combinations of words to be recognised grows
exponentially.

Figure 11.8 illustrates the idea of using a NN for the recognition of a whole
word. As inputs, 26 Mel-scale cepstrum coefficients taken from the whole word
signal are used. Each word is an output in the classification system.

11.4.2 A Case Study on Adaptive Spoken Digit
Recognition – English Digits

The task is of the recognition of speaker-independent pronunciations of
English digits. The English digits are taken from the Otago Corpus database
(http://translator.kedri.info). Seventeen speakers (12 males and 5 females) are used
for training, and another 17 speakers (12 males and 5 females) are used for testing
an EFuNN-based classification system. Each speaker utters 30 instances of English
digits during a recording session in a quiet room (clean data) for a total of 510
training and 510 testing utterances (for details see Kasabov and Iliev (2000)).

In order to assess the performance of the evolved EFuNN in this application,
a comparison with the linear vector quantization (LVQ) method (Chapter 2,
Kohonen (1990, 1997)) is presented. Clean training speech data is used to train
both the LVQ and the EFuNN models. Noise is introduced to the clean speech test
data to evaluate the behaviour of the recognition systems in a noisy environment.
Two different experiments are conducted with the use of the standard EFuNN
learning method from Chapter 3. In the first instance, car noise is added to the
clean speech. In the second instance office noise is introduced over the clean
signal. In both cases, the signal-to-noise ratio SNR ranges from 0 dB to 18 dB.

The results for car noise are shown in Fig. 11.9. The word recognition rate
(WRR) ranges from 86.87% at 18 dB to 83.33% at 0 dB. The EFuNN method
outperforms the LVQ method, which achieves WRR = 82.16% at 0 dB.

The results for office noise are presented in Fig. 11.10. The WRR of the evolved
EFuNN system ranges from 78.63% at 18dB to 71.37% at 0 dB, and is significantly
higher than the WRR of LVQ (21.18% at 0 dB).

"yes"

"no"

MSC1

MSC2

MSC26

Fig. 11.8 An illustration of an ANN for a whole word recognition problem on the recognition of two words,
‘yes’ and ‘no’ (from Kasabov (1996), ©MIT Press, reproduced with permission).

EIS for Adaptive Speech Recognition 337

0 2 4 6 8 10 12 14 16 18
82

83

84

85

86

87

88

89

90

91

EFuNN
LVQ

Fig. 11.9 Word recognition rate (WRR) of two speech recognition systems when car noise is added: LVQ, codebook
vectors, 396; training iterations, 15,840; EFuNN, 3MF; rule nodes, 157; sensitivity threshold Sthr = 0�9; error
threshold Errthr = 0�1; learning rates lr1 = 0�01 and lr2 = 0�01; aggregation thresholds thrw1 = 0�2,
thrw2 = 0�2; number of examples for aggregation Nexa = 100; 1 training iteration (Kasabov and Iliev, 2000).

0 2 4 6 8 10 12 14 16 18
20

30

40

50

60

70

80

EFuNN
LVQ

Fig. 11.10 Word recognition rate (WRR) of two speech recognition systems when office noise is added: LVQ,
codebook vectors, 396; training iterations, 15,840; EFuNN, 3MF; rule nodes, 157; Sthr = 0�9, Errthr = 0�1,
lr1 = 0�01, lr2 = 0�01, thrw1 = 0�2, thrw2 = 0�2, Nexa = 100, 1 training iteration (Kasabov and Iliev, 2000).

338 Evolving Connectionist Systems

A significant difference between the two compared systems EFuNN and LVQ is
that EFuNN can be further trained on new data in an online mode.

11.4.3 Adding New Words to Adapt an ECOS Classifier

When a NN is trained on a certain number of words (either in an off-line or in an
online mode) at a certain time of its operation there might be a need to add new
words to it, either of the same language, or of a different language. For example, a
command ‘avanti’ in Italian may be needed to be added to a system that is trained
on many English commands, among them, a ‘go’ command. The two commands,
although from different languages, have the same meaning and should trigger the
same output action after having been recognized by the system.

Adding new words (meaning new outputs) to a trained NN is not easy in many
conventional NN models. The algorithm for adding new outputs to an EFuNN,
given in Chapter 3, can be used for this purpose, supposing an EFuNN module is
trained on whole words (e.g. commands).

Experiments on adding new English words, and adding new words from the
Maori language to already trained (evolved) EFuNN on a preliminary set of English
words only, is presented in Ghobakhlou et al. (2003). A simple ECOS (a three-
layer evolving NN without the fuzzy layers used in EFuNN) was initially evolved
on the digit words (from the Otago Speech Corpus, http://translator.kedri.info)
and then new words were added in an incremental way to make the system
work on both old and new commands. The system was tested on a test set of
data. It manifested very little forgetting (less than 2%) of the previously learned
digit words, increased generalisation on new pronunciations (10% increase), and
very good adaptation to the new words (95.5% recognition rate), with an overall
increase of the generalisation capability of the system. This is in contrast to many
traditional NN models whose performance deteriorates dramatically when trained
on new examples (Robins,1996).

11.5 Adaptive, Spoken Language
Human–Computer Interfaces

Speech recognition and language modelling systems can be developed as main
parts of an intelligent human–computer interface to a database. Both data entry
and a query to the database can be done through a voice input.

Using adaptive online speech recognition systems means that the system can
be further trained on new users, new accents, and new languages in a continuous
online way. Such a system contains a language analysis module that can vary from
simple semantic analysis to natural language understanding.

Natural language understanding is an extremely complex phenomenon. It
involves recognition of sounds, words, and phrases, as well as their comprehension
and usage. There are various levels in the process of language analysis:

• Prosody deals with rhythm and intonation.
• Phonetics deals with the main sound units of speech (phonemes) and their

correct combination.

EIS for Adaptive Speech Recognition 339

• Lexicology deals with the lexical content of a language.
• Semantics deals with the meaning of words and phrases seen as a function of

the meaning of their constituents.
• Morphology deals with the semantic components of words (morphemes).
• Syntax deals with the rules, which are applied to form sentences.
• Pragmatics deals with the language usage and its impact on the listener.

It is the importance of language understanding in communication between humans
and computers which was the essence of Alan Turing’s test for AI (see Intro-
duction).

Computer systems for language understanding require methods that can
represent ambiguity, common-sense knowledge, and hierarchical structures.
Humans, when communicating with each other, share a lot of common-sense
knowledge which is inherited and learned in a natural way. This is a problem for
a computer program. Humans use face expressions, body language, gestures, and
eye movement when they communicate with each other. They communicate in a
multimodal manner. Computer systems which analyse speech signals, gestures, and
face expressions when communicating with users are called multimodal systems.
An example of such systems is presented in Chapter 13.

11.6 Exercise

Task: A small EIS for adaptive signal recognition, written in MATLAB
Steps:

1. Record or download wave data related to two categories of speech or sound
(e.g. male versus female, bird song versus noise, Mozart versus Heavy Metal,
‘Yes’ versus ‘No’).

2. Transform the wave data into features.
3. Prepare and label the samples for training an adaptive neural network model

(ECOS).
4. Train the model on the data.
5. Test the model/system on new data.
6. Adapt the system (add new data) and test its accuracy on both the new and the

old data.
7. Explain what difficulties you have overcome when creating the system.

A simple MATLAB code, that implements only the first part of the task, is given
in Appendix B. Screen shots of printed results after a run of the program are
included.

11.7 Summary and Open Problems

The applicability of evolving, adaptive speech recognition systems is broad and
spans all application areas of computer and information science where systems

340 Evolving Connectionist Systems

that communicate with humans in a spoken language (‘hands-free and eyes-free
environment’) are needed. This includes:

• Voice dialling, especially when combined with ‘hands-free’ operation of a
telephone system (e.g. a cell phone) installed in a car. Here a simple vocabulary
that includes spoken digits and some other commands would be sufficient.

• Voice control of industrial processes.
• Voice command execution, where the controlled device could be any terminal in

an office. This provides a means for people with disabilities to perform simple
tasks in an office environment.

• Voice control in an aircraft.

There are several open problems in the area of adaptive speech recognition, some
of them discussed in this chapter. They include:

1. Comprehensive speech and language systems that can quickly adapt to every
new speaker.

2. Multilingual systems that can learn new languages as they operate. The ultimate
speech recognition system would be able to speak any spoken language in the
world.

3. Evolving systems that would learn continuously and incrementally spoken
languages from all available sources of information (electronic, human voice,
text, etc.).

11.8 Further Reading

• Reviews on Speech Recognition Problems, Methods, and Systems (Cole et al.,
1995; Lippman, 1989; Rabiner, 1989; Kasabov, 1996)

• Signal Processing (Owens, 1993; Picone, 1993)
• Neural Network Models and Systems for Speech Recognition (Morgan and

Scofield, 1991)
• Phoneme Recognition Using Timedelay Neural Networks (Waibel et al., 1997)
• Phoneme Classification Using Radial Basis Functions (Renals and Rohwer, 1989)
• Hybrid NN-HMM Models for Speech Recognition (Trentin, 2001)
• A Study on Acoustic Difference Between RP English, Australian English, and NZ

English (Maclagan, 1982)
• Evolving Fuzzy Neural Networks for Phoneme Recognition (Kasabov, 1998b,

1999)
• Evolving Fuzzy Neural Networks for Whole Word Recognition, English and

Italian Digits (Kasabov and Iliev, 2000)
• Evolving Self-organising Maps for Adaptive Online Vowel Classification (Deng

and Kasabov, 2000, 2003)
• Adaptive Speech and Multimodal Word-Based Speech Recognition Systems

(Ghobaghlou et al., 2003)

12. Evolving Intelligent Systems
for Adaptive Image Processing

In adaptive processing of image data it is assumed that a continuous stream of
images or videos flows to the system and the system always adapts and improves
its ability to classify, recognise, and identify new images. There are many tasks in
the image recognition area that require EIS. Some application-oriented models and
experimental results of using ECOS, along with other specific or generic methods
for image processing, are presented in this chapter. The material here is presented
in the following sections.

• Image analysis and feature selection
• Online colour quantisation
• Adaptive image classification
• Online camera operation recognition
• Adaptive face recognition and face membership identification
• Exercise
• Summary and open problems
• Further reading

12.1 Image Analysis and Feature Selection

12.1.1 Image Representation

A 2D image is represented usually as a set of pixels (picture elements), each of
them defined by a triplet (x� y� u), where x and y are the coordinates of the pixel and
u is its intensity. An image is characterised by spatial and spectral characteristics.
The latter represents the colour of a pixel, as identified uniquely through its three
components – red, green, and blue (RGB) – each of them reflecting the white
light, producing a signal with a different wavelength (in nm; 465 blue; 500 green;
570 red). The RGB model that has 256 levels in each dimension, can represent
16,777,216 colours. The visual spectrum has the range of (400:750) nm wavelengths

Images are represented in computers as numerical objects (rather than perceived
objects) and similarity between them is measured as a distance between their
corresponding pixels, usually measured as Euclidean distance.

341

342 Evolving Connectionist Systems

Grey-level images have one number per pixel that represents the parameter u
(usually between 0 and 256), rather than three such numbers as it is in the colour
images.

12.1.2 Image Analysis and Transformations

Different image analysis and transformation techniques can be applied to an image
in order to extract useful information and to process the image in an information
system. Some of them are listed below and are illustrated with a MATLAB program
in Appendix C, along with prints of resulted images.

• Filtering, using kernels, e.g. Ker = [1 1 1 1 -7 1 1 1 1], where each pixel (or
a segment) Im_j and its 8 neighbored pixels of an image Im is convolved
(transformed):

Conv�Im_j� Ker� = Sum�Im_j∗Ker� (12.1)

where“*”means vector multiplication
• Statistical characteristics: e.g. histograms;
• Adding noise:

Im_j = Im_j + random�Nj� (12.2)

Example

A benchmark image Lena is used to illustrate the above techniques; see the
MATLAB demo program and the figures in Appendix C.

Different image analysis and image transformation techniques are required for
different tasks.

Example

For a task of counting objects (e.g. molecules, atoms, sheep, aircraft, etc.) and
their location from a camera image, the following image analysis techniques may
be needed as illustrated in Fig. 12.1 in the case of counting sheep.

• Texture analysis
• Finding boundaries of objects (areas of contrasts)
• Finding spatial object location

12.1.3 Image Feature Extraction and Selection

An image can be represented as a set of features forming a feature vector as
follows. Some of the most used features are the following ones.

EIS for Adaptive Image Processing 343

(a) (b)

(c) (d)

Fig. 12.1 Image transformations on a problem example of counting sheep in a paddock: (a) original image;
(b) texture analysis; (c) contour detection; (d) object location identification.

• Raw pixels: Each pixel intensity is a feature (input variable) .
• Horizontal profile: The sum (or average) intensity of each row of the image, in

the same order for all images.
• Vertical profile: The sum (or average) intensity of each column of the image, in

the same order for all images.
• Composite profile: The sum (or average) intensity of each column plus each

row of the image, in the same order for all images.
• Grey histogram.
• Colours as features and/or object shapes.
• Specialised features, e.g. for face recognition.
• FFT frequency coefficients.
• Wavelength features: see Fig. 12.2 for an example and a comparison between

a wavelet function and a periodic function (sine).

Example

A small program in MATLAB for extracting a composite profile from a raw image
is given in Appendix C.

344 Evolving Connectionist Systems

(a) (b)

Fig. 12.2 Image transformation functions: (a) Meyer wavelet; (b) sine wave.

12.2 Online Colour Quantisation

12.2.1 The Colour Quantisation Task

This task is concerned with the reduction of the number of colours n an image is
represented in, into a smaller number of colours m without degrading the quality
of the image (Chen and Smith, 1977). This is necessary in many cases as images
might be represented in thousands of colours, which makes the image transmission
on long distances and the image processing in a computer unacceptably slow. In
many cases keeping the thousands of colours may not be necessary at all.

As each colour is a mixture of the three main colours, red, green, and blue
(RGB), each colour is a point in the 3D space of the RGB. Mapping all n colours
of the pixels of an image into the RGB space and clustering all the data points
into a smaller number of clusters (e.g. 256; colour prototypes) that best represent
each colour of the original picture, is the first step of the colour quantisation.

The second step is substituting the original colour for each pixel with its closest
prototype. That gives the quantised image.

Many methods are known for colour quantisation (Chen and Smith, 1977;
Chaudhuri et al., 1992). Most of them perform in many iterations. In the next
section, online colour clustering and quantisation is achieved through applying
ESOM from Chapter2.

12.2.2 Online Colour Quantisation Using Evolving Self-Organising
Maps (ESOM)

Here, the ESOM algorithm from Chapter 2 is applied to the problem of online
colour quantisation. Results are compared with those achieved by applying other
methods, including median-cut, octree, and Wu’s method. Three test images are
chosen: Pool Balls, Mandrill, and Lena, as shown in Figs. 12.3 through 12.5.

The Pool Balls image is artificial and contains smooth colour tones and shades.
The Mandrill image is of 262,144 (512×512) pixels but has a very large number of
colours (230,427). The Lena image is widely used in the image processing literature
and contains both smooth areas and fine details.

Test images are quantised to 256 colours. For the different images, different
ESOM parameters are used as follows: (a) Pool Balls, e = 18�6, (b) Mandrill,
e = 20�4, (c) Lena, e = 31�9. In all three cases Tp = 2000 and � = 0�05.

EIS for Adaptive Image Processing 345

Fig. 12.3 Pool Balls benchmark colour image.

Fig. 12.4 Mandrill benchmark colour image.

Fig. 12.5 Lena colour benchmark image.

346 Evolving Connectionist Systems

Table 12.1 Quantization performance of different methods over the three
benchmark images from Figs. 12.1, 12.2, and 12.3, where the quantisation
error and the quantisation variance are shown (Deng and Kasabov, 2003).

Methods Pool Balls Mandrill Lena

Median-cut 2.58 / 8.28 11.32 / 5.59 6.03 / 3.50
Octree 4.15 / 3.55 13.17 / 4.98 7.56 / 3.83
Wu’s 2.22 / 2.19 9.89 / 4.56 5.52 / 2.94
ESOM 2.43 / 2.56 9.47 / 3.86 5.28 / 2.36

Online clustering is applied directly to the RGB colour space. Here we denote
the image as I , with a pixel number of N . The input vector to the ESOM algorithm
is now a three-dimensional one: Ii = (Ri, Gi, Bi).

The online clustering process of ESOM will construct a colour map C = �cj�j =
1� � � � � 256�. Each image pixel is then quantised to the best-matching palette colour
cm, a process denoted Q: Ii —–> cm. To speed up the calculation process, the
L–norm (see Chaudhuri et al. (1992) is adopted as an approximation of the
Euclidean metric used in ESOM. The quantisation root mean square error between
the original and the quantised images is calculated pixelwise.

Apart from the quantisation error, quantisation error variance is another factor
which influences the visual quality of the quantised image.

Quantisation performance of different methods is compared in Table 12.1, where
the quantisation error and the quantisation variance are shown.

Generally speaking, ESOM not only achieves a very small value of average
quantisation error; its error variance is also the smallest. This explains why images
quantised by ESOM have better visual quality than those done by other methods.

Figures 12.6 through 12.9 show the quantized Lena image with the use of the
median cut method (Heckbert, 1982), octree (Gervautz and Purghatofer, 1990),
Wu’s method (Wu, 1992), and ESOM, respectively (Deng and Kasabov, 2003). The

Fig. 12.6 Off-line quantized Lena image with the use of the median cut method.

EIS for Adaptive Image Processing 347

Fig. 12.7 Off-line quantized Lena image with the use of the octree.

Fig. 12.8 Off-line quantized Lena image with the use of Wu’s method.

accuracy of the ESOM model is comparable with the other methods, and in several
cases, e.g., the Lena image, the best one achieved.

Using ESOM takes only one epoch of propagating pixels through the ESOM
structure, whereas the other methods require many iterations. With the 512 ×
480-sized Lena image, it took two seconds for the ESOM method to construct
the quantisation palette on a Pentium-II system running Linux 2.2. By using an
evolving model, the time searching for best matching colours is much less than
using a model with a fixed number of prototypes. In addition to that, there is a
potential of hardware parallel implementation of ESOM, which will increase greatly
the speed of colour quantisation and will make it applicable for online realtime
applications to video streams.

348 Evolving Connectionist Systems

Fig. 12.9 Online quantized Lena image with the use of ESOM (Deng and Kasabov, 2003).

As ESOM can be trained in an incremental online mode, the already evolved
ESOM on a set of images can be further tuned and modified according to new
images.

12.3 Adaptive Image Classification

12.3.1 Problem Definition

Some connectionist and hybrid neuro-fuzzy connectionist methods for image
classification have been presented in Pal et al. (2000) and Hirota (1984). The
classification procedure consists of the following steps.

1. Feature extraction from images. Different sets of features are used depending on
the classification task. Filtering, fast Fourier transformation (FFT), and wavelet
transformations (Wang et al., 1996; Szu and Hsu, 1999) are among the most
popular ones.

2. Pattern matching of the feature vectors to a trained model. For pattern matching,
different NN and hybrid neuro-fuzzy-chaos techniques have been used (see e.g.
Bezdek (1993) and Szu and Hsu (1999)).

3. Output formation. After the pattern matching is achieved, it may be necessary
to combine the calculated output values from the pattern classifier with other
sources of information to form the final output results. A simple technique is to
take the max value of several NN modules, each of them trained on a particular
class datum, as is the case in the experiment below.

EIS for adaptive image classification are concerned with the process of incremental
model creation when labelled data are made available in a continuous way. The

EIS for Adaptive Image Processing 349

classifier is updated with each new labelled datum entered and is used to classify
new, unlabelled data. And this process is a continuous one.

12.3.2 A Case Study of Pest Identification from Images
of Damaged Fruit

The case study here is the analysis of damage to pip fruit in orchards with the goal
of identifying what pest caused the damage (Wearing, 1998). An image database
is also built, allowing for content-based retrieval of damage images using wavelet
features (Wearing, 1998). The problem is normally compounded by the fact that
the images representing a damaged fruit vary a lot. Images are taken either from
the fruit or from the leaves, and are taken at different orientations and distances as
shown in Figure 12.10a,b. As features, wavelets are extracted from the images (see
Fig. 12.2) for the difference between wavelets and sin functions used in the FFT.

Using Daubechies wavelets for image analysis and image comparison has already
been shown to be a successful technique in the analysis of natural images (Wang
et al., 1996; Szu and Hsu, 1999). In the experiment here the coefficients resulting
from the wavelet analysis are used as inputs to an EFuNN module (see Chapter 3)
for image classification.

This section suggests a methodology for classification of images based on
evolving fuzzy neural networks (EFuNNs) and compares the results with the use
of a fixed size, off-line fuzzy neural network (FuNN; Kasabov et al. (1997)) and
with some other techniques.

For the experimental modelling, a set of 67 images is used to train five EFuNNs,
one for the identification of each of the five pests in apples, denoted as: alm – l;
alm – f ; cm; lr – l; lr – f . The initial sensitivity threshold is selected as Sthr =
0.95 and the error threshold used is Errthr = 0.01. The EFuNNs are trained for
one epoch. The number of rule nodes generated (rn) after training for each of the
EFuNN models is as follows: EFuNN – alm – l: rn = 61, EFuNN – alm – f rn = 61,
EFuNN – cm: rn = 51, EFuNN – lr – l: rn = 62, and EFuNN – lr – f : rn = 61. The
results of the confusion matrix are presented in Table 12.2.

The evolving EFuNN models are significantly better at identifying pests on new
test data (what pest has caused the damage to the fruit) than the FuNNs (not

(a)

(b)

Fig. 12.10 Examples of codling moth damage: (a) on apples; (b) on leaves (Wearing, 1998).

350 Evolving Connectionist Systems

Table 12.2 Test classification results of images of damaged fruit with the use of EFuNN, the
confusion matrix over five types of pests (Woodford et al., 1999).

training data sums percent
5 eFunns lr = 0�0 pune = 0�1 errth = 0�01 sthr = 0�95 fr = 0.

alm-l alm-f cm lr-l lr-f

am-l 9 0 0 0 0 9 100
alm-f 0 5 0 0 0 5 100
cm 0 0 22 0 0 22 100
lr-l 0 0 0 16 0 16 100
lr-f 0 0 0 0 15 15 100

67
sum 9 5 22 16 15 67
percent 100 100 100 100 100 100.00
rule nodes 61 61 61 62 61

test data
alm-l alm-f cm lr-l lr-f sums percent

am-l 2 0 1 1 0 4 50
alm-f 0 1 0 0 0 1 100
cm 1 1 7 1 2 12 58
lr-l 0 0 0 2 0 2 100
lr-f 0 0 1 1 2 4 50

14
sum 3 2 9 5 4 23
percent 67 50 78 40 50 60.87

evolving and having a fixed structure; see Kasabov (1996)). Computing the kappa
coefficient for both the FuNN and EFuNN confusion matrixes substantiates this
with results of 0.10 for the FuNN and 0.45 for the EFuNN.

New images can be added to an EFuNN model in an online mode. Rules can be
extracted that represent the relationship between input features, encoding damage
on a fruit, and the class of pests that did the damage.

12.4 Incremental Face Membership Authentication and
Face Recognition

Face image recognition is a special case of the image recognition task. Here,
incremental adaptive learning and recognition in a transformed feature space of
PCA and LDA using IPCA and ILDA (see Chapter 1) are used for two problems.

12.4.1 Incremental Face Authentication Based on Incremental PCA

The membership authentication by face classification is considered a two-class
classification problem, in which either member or nonmember is judged by the
system when a human tries to get authentication. The difficulties of this problem
are as follows.

EIS for Adaptive Image Processing 351

1. The size of the membership/nonmembership group is dynamically changed.
2. In as much as face images have large dimensions, the dimensional reduction

must be carried out because of the limitation of the processing time.
3. The size of the membership group is usually smaller than that of nonmem-

bership group.
4. There are few similarities within the same class.

In this research case, the first two difficulties are tackled by using the concept
of incremental leaning. In real situations, only a small amount of face data are
given to learn a membership authentication system at a time. However, the system
must always make a decision as accurately as possible whenever the authentication
is needed. To do that, the system must learn given data incrementally so as to
improve the performance constantly. In this sense, we can say that membership
authentication problems essentially belong to the incremental learning problem
as well. However, if large-dimensional data are given to the system as its inputs,
it could be faced with the following problems.

1. Face images have large dimensions and the learning may continue for a long
time. Therefore, it is unrealistic to keep all or even a part of data in the memory.

2. The system does not know what data will appear in the future. Hence, it is quite
difficult to determine appropriate dimensions of feature space in advance.
The first problem can be solved by introducing one-path incremental learning.
On the other hand, for the second problem, we need some method to be able to
construct feature space incrementally. If we use principal component analysis
(PCA) as a dimensional reduction method, incremental PCA (IPCA; Ozawa
et al. (2004a,b, 2005a,b)), can be used. This is illustrated by Ozawa et al. with
a model that consists of three parts.

• Incremental PCA
• ECM (online evolving clustering method; see Chapter 2)
• K-NN classifier (see Chapter 1)

In the first part, the dimensional reduction by IPCA is carried out every time a
new face image (or a small batch of face images) is given to the system. In IPCA,
depending on given face images, the following two operations can be carried out
(see Chapter 1),

• Eigenaxes rotation
• Dimensional augmentation

When only rotation is conducted, the prototypes obtained by ECM can be easily
updated; that is, we can calculate the new prototypes by multiplying it and
the rotation matrix. On the other hand, if dimensional augmentation is needed,
we should note that the dimensions of prototypes in ECM are also increased.

352 Evolving Connectionist Systems

A simple way to cope with this augmentation is to define the following twofold
prototypes for ECM: �pN

i � pD
i � �i = 1� · · · � Pt� where pN

i and pD
i are, respectively, the

ith prototype in the N-dimensional image space and the D-dimensional eigenspace,
and Pt is the number of prototypes at time t. Keeping the information on proto-
types in the original image space as well as in the eigenspace, it is possible to
calculate a new prototype in the augmented (D+ 1)-dimensional eigenspace exactly.
Therefore, we do not have to modify the original ECM algorithm at all, except
that the projection of all prototypes from the original space to the augmented
(D+ 1)-dimensional eigenspace must be carried out before clustering by ECM.
In the last part of the k-NN classifier, we do not need any modifications for
the classifier even if the rotation and augmentation in the eigenspace are carried
out, because they only calculate the distance between a query and each of the
prototypes.

To evaluate the performance of the proposed incremental authentication system,
we use (see Ozawa et al. (2005a,b;2006)) the face dataset that consists of 1355
images (271 persons, 5 images for each person). Here, 4 of 5 images are used
for training and the rest are used for test. From this dataset, 5% of persons’
images are randomly selected as the initial training (i.e., 56 images in total). The
number of incremental stages is 51; hence, a batch of about 20 images is trained
at each stage. The original images are preprocessed by wavelets, and transformed
into 644-dimensional input vectors. To evaluate the average performance, fivefold
cross-validation is carried out. For comparative purposes, the performance is also
evaluated for the nonincremental PCA in which the eigenspace is constructed from
the initial dataset and the eigenvectors with over 10% power against the cumulative
eigenvalue are selected (only one eigenvector is selected in the experiment).
The two results are very similar confirming the effectiveness of the incremental
algorithm.

12.4.2 Incremental Face Image Learning and Classification Based
on Incremental LDA

In Pang et al. (2005;2005a,b) a method for incremental LDA (ILDA) is proposed
along with its application for incremental image learning and classification (see
Chapter 1). It is shown that the performances of ILDA on a database with a large
number of classes and high-dimension features are similar to the performance
of batch mode learning and classification with the use of LDA. A benchmark
MPEG-7 face database is used, which consists of 1355 face images of 271 persons
(five different face images per person are taken), where each image has the size
of 56×46. The images have been selected from AR(Purdue), AT&T, Yale, UMIST,
University of Berne, and some face images obtained from MPEG-7 news videos.

An incremental learning is applied on a database having 271 classes (faces)
and 2576 (56 × 46) dimension features, where the first 30 eigenfeatures of ILDA
are taken to perform K-NN leave-one-out classification. The discriminability of
ILDA, specifically when bursts of new classes are presented at different times, was
evaluated and also the execution time and memory costs of ILDA with the increase
of new data addition.

EIS for Adaptive Image Processing 353

12.5 Online Video-Camera Operation Recognition

12.5.1 The Camera Operation Recognition Task

Advances in multimedia, communications, and computer technologies have led
to widespread accessibility of video data. Applications such as digital libraries
and digital video broadcast deal with large volumes of video data, which require
powerful video indexing and retrieval techniques. One important issue is camera
operation recognition.

At the stage of video parsing, it is critical to distinguish gradual shot transitions
from the false positives due to camera operation because they both exhibit temporal
variances of the same order. Detecting camera operations is also needed at the
step of video indexing and retrieval. As camera operations explicitly reflect how
the attention of the viewer should be directed, the clues obtained are useful for
indexing and summarizing video contents (Koprinska and Carrato, 1998).

This is illustrated on a case study example below, where the EFuNN model
used manifested robustness to catastrophic forgetting when new video data were
added. Its performance compares favourably with other classifiers in terms of
classification accuracy and learning speed.

12.5.2 A Case Study

An evolving fuzzy neural network (EFuNN; Chapter 3) is applied here for camera
operation recognition based on motion vector patterns extracted from an MPEG-
2 compressed stream (Koprinska and Carrato,1998). The general experimental
scheme is shown in Fig. 12.11.

In the presented experiment there are six classes considered.

1. Static: Stationary camera and little scene motion
2. Panning: Camera rotation around its horizontal axis
3. Zooming: Focal length change of a stationary camera
4. Object motion: Stationary camera and large scene motion
5. Tracking: Moving object being tracked by a camera
6. Dissolve: Gradual transition between two sequences where the frames of the

first one get dimmer and these of the second one get brighter

video sequences motion vectors (MV)

MPEG2
encoder

MVs
extraction
& filtering

feature
extraction

classification

EFuNN
classifier

feature
vectors

compressed
video
stream

zoom, pan,
track, static
obj. movement,
dissolve

Fig. 12.11 A general framework of a video-camera operation recognition system (Koprinska and Kasabov,
2000).

354 Evolving Connectionist Systems

Although four of these classes are camera operations, object motion and dissolve
are added as they introduce false positives. Each of the classes is characterized
by specific dynamic patterns represented as motion vectors (MVs) of P and
B frames in a MPEG-encoded sequence. The well-known benchmark sequences
Akiyo, Salesman, Miss America, Basketball, Football, Tennis, Flower Garden, and
Coastguard were used in our experiments; see Fig. 12.12.

It can be seen from Fig. 12.12 that the three static examples have rather different
MV fields. The frames of Akiyo can be viewed as ideal static images, however,
there are occasionally sharp movements in the Salesman images.

The MV field of Miss America is completely different as the encoder used
generates MVs with random orientation for the homogeneous background. Hence,
it is advantageous to use a classification system capable to incrementally adapt to
new representatives of the static class without the need to retrain the network on
the originally used data.

Akiyo (static) Salesman (static)

Basketball (object motion)

Coast guard (track)

Basketball - Miss America (dissolve)

Miss America (static)

Flower garden (zoom)

Flower garden (pan)

Fig. 12.12 Examples of six classes of camera operation with their motion vectors (MV; Koprinska and Carato
(1998)).

EIS for Adaptive Image Processing 355

Feature Extraction

Data preprocessing and feature extraction are performed as in Koprinska and
Carrato (1998). Motion vectors of P and B frames are extracted and smoothed by
a vector median filter. Based on them, a 22-dimensional feature vector is created
for each frame. The first component is a measure for how static the frame is. It
is calculated as the fraction of zero MVs, using both the forward and backward
MV components. The forward MV area is then subdivided in seven vertical strips,
for which the average and standard deviation of MV directions and the average of
MV magnitudes are computed.

In order to build the EFuNN classifier, the MV patterns of 1200 P and B frames
(200 for each class), have been visually examined and manually labelled.

Experimental Results and Discussion

The goal of the experiments was fourfold: to test the overall classification
performance of EFuNN for online camera operations recognition; to analyse the
individual classes detection; to find how the different number of fuzzy membership
functions influences the EFuNN performance; and to assess the contribution of
rule node aggregation.

For the evaluation of the EFuNN classification results, we used tenfold cross-
validation. Apart from the various values for membership function mf and
thresholds for aggregation Rmax which are discussed below, the EFuNN param-
eters were set as follows: initial sensitivity threshold Sthr = 0.92; error threshold
E = 0.08; learning rates lr1 = 0.05, lr2 = 0.01, for the two rule node layers W1
and W2, respectively; number of examples after which rule node aggregation is
applied, Nagg = 60.

Table 12.3 shows the classification accuracy of EFuNN with a different number
of membership functions when applied to video frame classification. As can be
seen from the table, EFuNN achieves the best classification accuracy when four
membership functions are used. Further increase in their number almost does not
affect the accuracy on the training set but results in worse accuracy on unseen
examples due to overtraining.

The respective number of nodes in the EFuNN models is presented in Table 12.4.
The table indicates that increasing the number of the membership functions implies

Table 12.3 EFuNN classification accuracy [%] on the training and testing set
for different number mf of membership functions used in the EFuNN. The
maximum radius of the receptive field is equal to the aggregation thresholds;
i.e. Rmax = w1Thr = w2Thr = 0�2 (Koprinska and Kasabov, 2000).

mf Acc. [%] on training set Acc. [%] on testing set

2 85.8 ± 1.5 84.5 ± 2.4
3 91.4 ± 1.1 86.8 ± 4.5
4 95.5 ± 0.6 91.6 ± 2.9
5 95.5 ± 0.4 89.3 ± 4.3
6 95.2 ± 0.9 88.6 ± 4.5

356 Evolving Connectionist Systems

Table 12.4 Number of nodes (inputs, fuzzy input nodes, rule nodes, fuzzy output nodes, and outputs) for
various EFuNN architectures for the video camera operation recognition case study. The number of rule nodes
increases with the increase of membership functions mf from 2 to 6 (Koprinska and Kasabov, 2000).

Nodes mf

2 3 4 5 6

Input 22 22 22 22 22
Fuzzy inp. 44 66 88 110 132
Rule 30 ± 2 101.3 ± 5.5 183.1 ± 5.5 204.9 ± 9.6 229.5 ± 7.9
Fuzzy out. 12 18 24 30 36
Output 6 6 6 6 6
Total 114 213 323 362 425

considerable growth in the number of rule nodes and, hence, the computational
complexity of the EFuNN’s training algorithm. As a result, learning speed slows
down significantly. However, depending on the specific application, a suitable
trade-off between the learning time and the accuracy can be found.

For the sake of comparison, Table 12.5 summarizes the results achieved by the
method of learning vector quantisation LVQ, using the public domain package
LVQ Pack. The performance of the online EFuNN model compares favourably
with LVQ in terms of classification accuracy.

The EFuNN model requires only 1 epoch for training in contrast to LVQ’s
multipass learning algorithms that need 1520 epochs in our case study.

Table 12.6 summarises the EFuNN classification of the individual classes. It was
found that although ‘zoom’ and ‘pan’ are easily identified, the recognition of object
movement, tracking, and dissolve are more difficult. Despite the fact that the MV

Table 12.5 LVQ performance on the video camera operation recognition case study (Koprinska
and Kasabov, 2000).

Accuracy [%] on training set Accuracy [%] on
testing set

Nodes (input &
codebook)

Training epochs

85.4 ± 2.5 85.8 ± 2.2 60 (22 inp., 38 cod.) 1520

Table 12.6 EFuNN classification accuracy in [%] of the individual video classes for the video camera operation
recognition case study (see Koprinska and Kasabov (2000)). Membership functions are between mf = 1 and
mf = 6. Optimum performance of the EFuNN classifier is achieved when for each individual class a specific
number of mf is used (Koprinska and Kasabov, 2000).

mf Zoom Pan Object motion. Static Tracking Dissolve

2 100 97.2 ± 5.4 74.6 ± 12.0 95.0 ± 6.6 75.9 ± 15.6 62.1 ± 14.8
3 100 92.8 ± 4.1 78.1 ± 12.7 97.8 ± 4.4 72.9 ± 20.6 77.3 ± 14.7
4 100 97.4 ± 2.8 88.1 ± 10.7 98.1 ± 2.5 83.0 ± 11.5 84.0 ± 10.8
5 100 99.0 ± 2.1 85.0 ± 9.2 97.7 ± 3.1 69.7 ± 21.5 85.2 ± 9.5
6 100 94.3 ± 5.2 88.4 ± 9.7 97.7 ± 3.3 63.5 ± 18.8 87.6 ± 8.0

EIS for Adaptive Image Processing 357

(a)

0

50

100

0.05 0.2 0.35 0.5 0.65 0.8

w1Thr (=w2Thr)
ac

c.
 [

%
]

acc. [%] on training set

acc. [%] on testing set

(b)

0
50

100
150
200
250
300

0.05 0.2 0.35 0.5 0.65 0.8

w1Thr (=w2Thr)

nu
m

be
r

of
 r

ul
e

no
de

s

Fig. 12.13 Impact of the aggregation on the evolving systems: (a) the classification accuracy drops significantly
if the aggregation threshold is above 0.5; (b) the number of rule nodes drops significantly for an aggregation
threshold above 0.15. The number of membership functions is mf = 2 (Koprinska and Kasabov, 2000).

fields of Miss America were not typical for static videos and complicated learning,
they are learned incrementally and classified correctly in the EFuNN system.

Figures 12.13a,b show the impact of aggregation on the classification accuracy
and on the number of rule nodes, respectively. Again, tenfold cross-validation was
applied and each bullet represents the mean value for the ten runs. As expected, the
results demonstrate that the aggregation is an important factor for achieving good
generalization and keeping the EFuNN architecture at a reasonable size. The best
performance in terms of a good trade-off between the recognition accuracy and
net size was obtained for Rmax = 0.15, and 0.2. When the aggregation parameter
Rmax is between 0.25 and 0.55, the accuracy on the testing set drops with about
10% as the number of rule nodes becomes insufficient. Further increase in the
values of the aggregation coefficients results in networks with one rule node which
obviously cannot be expected to generalise well.

In conclusion of this section, an application of EFuNN for camera operation
recognition was presented. EFuNN learns from examples in the form of motion
vector patterns extracted from MPEG-2 streams. The success of the EFuNN model
can be summarised as high classification accuracy and fast training.

12.6 Exercise

Task specification: A small EIS for image analysis and adaptive image recognition

Steps:

1. Record or download images related to two categories (e.g. male versus female,
face versus no-face, cancer cell versus noncancer cell, damaged object versus
normal, etc.).

358 Evolving Connectionist Systems

2. Transform the images into feature vectors.
3. Prepare and label the samples for training a classifier model /system.
4. Train a classification system on the data.
5. Test the system on test data.
6. Adapt the system to new image data.
7. Explain what difficulties you have overcome when creating the system.

Exemplar programs for parts of the task are given in Appendices B and C.

12.7 Summary and Open Problems

ECOS have features that make them suitable for online image and video processing.
These features are:

• Local element training and local optimisation
• Fast learning (possibly one pass)
• Achieving high local or global generalization in an online learning mode
• Memorising exemplars for a further retrieval or for a system’s improvement
• Interpretation of the ECOS structure as a set of fuzzy rules
• Dynamic self-organisation achieved through growing and pruning

Some open problems in this research area are:

1. Identifying artists by their paintings (see Herik and Postma (2000))
2. Combining online image analysis with online analysis of other modalities of

information
3. Other online image feature selection methods, in addition to incremental LDA

(Pang et al., 2005a,b) and incremental PCA (Ozawa et al., 2005a,b, 2006).

12.8 Further Reading

For further details of the material presented in this chapter, the reader may refer
to Deng and Kasabov (2003), Kasabov et al. (2000a,b), Koprinska and Kasabov
(2000), and Ozawa et al. (2005a,b, 2006).

Further material on the issues discussed in this chapter can be found as follows.

• Adaptive Pattern Recognition (Pao, 1989)
• Image Colour Quantisation (Heckbert, 1982; Gervautz and Purghatofer, 1990;

Wu, 1992)
• Neuro-fuzzy Methods for Image Analysis (Pal et al., 2000; Ray and Ghoshal, 1997;

Szu and Hsu, 1999)
• Image Classification (Hirota, 1984)
• Image Segmentation (Bezdek et al., 1993)
• Recognition of Facial Expression using Fuzzy Logic (Ralescu and Iwamoto, 1993)
• Applying Wavelets in Image Database Retrieval (Wang et al., 1996)

EIS for Adaptive Image Processing 359

• Classification of Satellite Images with the Use of Neuro-fuzzy Systems (Israel
et al., 1996)

• MPEG Image Transformations (Koprinska and Carrato, 1998)
• Image Analysis of Damaged Fruit (Wearing, 1998; Woodford et al., 1999)
• Incremental Image Learning and Classification (Ozawa et al., 2005a,b)

13. Evolving Intelligent Systems
for Adaptive Multimodal
Information Processing

The chapter presents a general framework of an EIS in which auditory and
visual information are integrated. The framework allows for learning, adaptation,
knowledge discovery, and decision making. Applications of the framework are: a
person-identification system in which face and voice recognition are combined in
one system, and a person verification system. Experiments are performed using
visual and auditory dynamic features which are extracted in a synchronised way
from visual and auditory data. The experimental results support the hypothesis that
the recognition rate is considerably enhanced by combining visual and auditory
features.

The chapter is presented in the following sections.

• Multimodal information processing
• A framework for adaptive integration of auditory and visual information
• Person identification based on auditory and visual information
• Person verification based on auditory and visual information
• Summary and open problems
• Further reading

13.1 Multimodal Information Processing

Many processes of perception and cognition are multimodal, involving auditory,
visual, tactile, and other types of information processing. All these processes are
extremely difficult to model without having a flexible, multimodular evolving
system in place. Some of these modalities are smoothly added at a later stage of
the development of a system without the need to ‘reset’ the whole system.

Information from different modalities can support the performance of a
computer system originally designed for a task with a unimodal nature. Thus, a
system for speech recognition may benefit from an additional visual information
stream. For instance, visual information from the lips and the eyes of a speaker
improves the spoken-language recognition rate of a speech-recognition system
substantially. The improvement per se is already obvious from the use of two
sources of information (i.e. sound and images) in one system.

361

362 Evolving Connectionist Systems

Research on multimodal speech-recognition systems has already shown
promising results. A notable example is the successful recognition of words
pronounced in a noisy environment, i.e. the ‘cocktail party problem’ (also known
as the ‘source separation problem’; Massaro and Cohen (1983)). The additional
visual information can also be used for solving important problems in the area of
spoken-language recognition, such as the segmentation of words from continuous
speech and the adaptation to new speakers or to new accents.

Conversely, image information, auditory information, and textual input (possibly
synchronised with the image and the auditory signal) can be used to enhance the
recognition of objects, for instance, the identification of moving objects based on
information coming from their blurred images and their sounds. Obviously, the
auditory information does not have to be speech or sound within the audible spectrum
of human perceivers. It could also be a signal characterised by its frequency, time, and
intensity (e.g. the echolocation of dolphins). The main question is how much auditory
or textual input information is required in order to support or improve an image-
recognition process significantly. A second derived question is how to synchronise
two (or more) flows of information in a multimodal computer system.

Integrating auditory and visual information in one system requires the following
four questions to be addressed.

• Auditory and visual information processing are both multilevel and hierar-
chical (ranging from an elementary feature extraction level up to a conceptual
level). Therefore, at which level and to what degree should the two infor-
mation processes be integrated? One model for such integration was discussed
in Chapter 9 (see Fig. 9.24).

• How should time be represented in an integrated audiovisual information-
processing system? This is a problem related to the synchronisation of two flows
of information. There could be different scales of integration, e.g. milliseconds,
seconds, minutes, hours.

• How should adaptive learning be realised in an integrated audiovisual
information-processing system? Should the system adapt each of its modules
dependent on the information processing in the other modalities?

• How should new knowledge (e.g. new rules) be acquired about the auditory and
the visual inputs of the real world?

This chapter describes a general framework for integrating auditory and visual
information to answer these questions. The application of the framework is illus-
trated on a person identification task involving audiovisual inputs.

13.2 Adaptive, Integrated, Auditory and Visual Information
Processing

13.2.1 A Framework of EIS for Multimodal Auditory and Visual
Information Processing

Below we describe a connectionist framework for auditory and visual information-
processing systems, abbreviated as AVIS. The architecture of AVIS is illustrated
in Fig. 13.1 and consists of three subsystems: an auditory subsystem, a visual

EIS for Adaptive Multimodal Information Processing 363

visual
input

audio
input

V2

V5

V4

V3

V1

A5

A4

A3

A2

A1

auditory
subsystemvi

su
al

su
bs

ys
te

m

higher-level
concept subsystem

Fig. 13.1 A block diagram of a framework for auditory and visual information processing systems (AVIS; see
Kasabov et al. (2000c)).

subsystem, and a higher-level conceptual subsystem. Each of them is specified
below, followed by a description of the modes of operation.

13.2.2 Modes of Operation

AVIS allows an auditory subsystem, as well as a visual subsystem, to operate either
as a separate subsystem, or in concert. Their distinct outputs will be combined
in a higher-level subsystem. In addition, each subsystem in isolation is able to
accommodate both unimodal and bimodal input streams. Altogether, AVIS can
operate in six main modes of operation:

• Unimodal auditory mode: The auditory subsystem processes auditory input only
(e.g. spoken language recognition from speech).

• Cross-modal auditory mode: The auditory subsystem processes visual input only
(e.g. speech recognition from lip movements).

• Bimodal auditory mode: The auditory subsystem processes both visual and
auditory inputs (e.g. spoken language recognition from speech and lip
movement).

• Unimodal visual mode: The visual subsystem processes visual input only (e.g.
face recognition).

• Cross-modal visual mode: The visual subsystem processes auditory input only
(e.g. an image-recognition system trained on audiovisual inputs recalls images
from their associated sounds).

• Bimodal visual mode: The visual subsystem processes both visual and auditory
inputs (e.g. recognising a speaker by his or her speech and face).

364 Evolving Connectionist Systems

Furthermore, each of the six modes can be combined with the conceptual
processing level in the conceptual subsystem. There are various strategies for
combining multimodal sources of information. We propose the principle of statis-
tically based specialisation for taking decisions based on different sources of
information (i.e. different modalities).

In general, the auditory and the visual subsystems deal with different parts
of a task. For instance, take a person-identification task; the auditory subsystem
is responsible for recognising a person’s voice and the visual subsystem for
recognising a person’s face. Each of the subsystems makes its own contribution
to the overall task. The conceptual subsystem weights the contributions of the
two subsystems according to their (average) recognition rates. The weights have
values that are proportional to the probability of each subsystem to produce
a correct classification. For example, if the probability of correct recognition
of the visual subsystem is 0.7, and the recognition probability of the auditory
subsystem is 0.5, then the weights of the two inputs to the conceptual subsystem
are 0.7/1.2 and 0.5/1.2 for the visual and auditory subsystems, respectively. Hence,
the conceptual subsystem assigns more weighted ‘trust’ to the visual subsystem.
The principle of statistically based specialisation can be readily implemented in a
connectionist way.

13.3 Adaptive Person Identification Based on Integrated
Auditory and Visual Information

The AVIS framework can be applied to tasks involving audiovisual data. As
an example of the AVIS framework, here an exemplar application system for
person identification based on auditory and visual information is presented, abbre-
viated as PIAVI. The system identifies moving persons from dynamic audiovisual
information.

13.3.1 System Architecture

The global structure of PIAVI resembles the structure of AVIS. However, in
PIAVI the auditory and visual subsystems each consist of single modules. Each
of the subsystems is responsible for a modality-specific subtask of the person-
identification task. The visual subsystem processes visual data associated with the
person, i.e. lip-reading, or facial expressions. The inputs to this subsystem are
raw visual signals. These signals are preprocessed, e.g. by normalising or edge-
enhancing the input image. Further processing subserves the visual identification of
the person’s face. The auditory subsystem of PIAVI comprises the processing stages
required for recognising a person by speech. The inputs of the subsystem are raw
auditory signals. These signals are preprocessed, i.e. transformed into frequency
features, such as Mel-scale coefficients, and further processed to generate an
output suitable for identification of a person by speech. The conceptual subsystem
combines inputs from the two subsystems to make a final decision.

EIS for Adaptive Multimodal Information Processing 365

13.3.2 Modes of Operation

PIAVI has four modes of operation, briefly described below.

1. Unimodal visual mode takes visual information as input (e.g. a face), and
classifies it. The classification result is passed to the conceptual subsystem for
identification.

2. Unimodal auditory mode deals with the task of voice recognition. The classifi-
cation result is passed to the conceptual subsystem for identification.

3. Bimodal (or early-integration) mode combines the bimodal and cross-modal
modes of AVIS by merging auditory and visual information into a single (multi-
modal) subsystem for person identification.

4. Combined mode synthesises the results of all three modes. The three classifi-
cation results are fed into the conceptual subsystem for person identification.

In two case studies we examine the above modes of processing of audiovisual
information in PIAVI. The first case study consists of a preliminary investigation
using a small dataset with the aim of assessing the beneficial effects of integrating
auditory and visual information streams at an early locus of processing. The second
case study employs a larger dataset to evaluate the relative efficiencies of unimodal
and bimodal processing in solving the person-identification task.

13.3.3 Case Study 1

The first case study aims at evaluating the added value of combining auditory and
visual signals in a person-identification task. An additional goal is to assess the
complexity of the task of identifying persons from dynamic auditory and visual input.

Given the goals of the study, the dataset has to fulfil two requirements. First,
it should contain multiple persons. Second, the persons contained in the dataset
should be audible and visible simultaneously. To meet these two requirements,
we downloaded a digital video containing small fragments of four American talk-
show hosts, from CNN’s Web site. The movie contains visual frames accompanied
by an audio track. Each frame lasts approximately 125 milliseconds. During most
of the frames, the hosts are both visible and audible. The dataset is created as
follows. Twenty suitable frames, i.e. frames containing both visual and auditory
information, are selected for each of the four persons (hosts). The visual and
auditory features are extracted from 2.5-second fragments (20 frames).

Feature Extraction

Person recognition relies on an integration of auditory and visual data. Although
static images may suffice for person recognition, in our study we rely on dynamic
visual information for two reasons in particular. First, dynamic features avoid recog-
nition on the basis of unreliable properties, such as the accidental colour of the skin
or the overall level of lighting. Second, the added value of integrating auditory and
visual information at an early level lies in their joint temporal variation.

366 Evolving Connectionist Systems

Our emphasis on dynamical aspects implies that the integration of auditory and
visual information requires an extended period of time. The duration required for
integration varies depending on the type of audiovisual event. For early integration,
a duration of about 100 milliseconds may suffice when short-duration visual
events (e.g. the appearance of a light) are to be coupled to short-duration auditory
events (e.g. a sound). However, when dynamical visual events such as face and
lip movements are to be coupled to speech, a duration of at least half a second
is required. To accommodate early integration, we defined aggregate features
encompassing the full duration (i.e. 125 milliseconds) of the video segments for
both modalities.

Visual Features

The images (i.e. frames of video data) contained in each segment need to be trans-
formed into a representation of the spatiotemporal dynamics of a person’s head. It
is well known that spatiotemporal features are important for person-identification
tasks. Behavioural studies show that facial expressions, potentially person-specific,
flicker rapidly across the face within a few hundred milliseconds (in Stork and
Hennecke (1996)). Because the head moves in several directions during a segment,
a means of compensating for these variations in a three-dimensional pose is
required. Moreover, the head should be segmented from the background to remove
background noise. To fulfil these requirements, we used a straightforward spatial-
selection method. A single initial template was defined for each person in the
dataset. The size of the template was set at M ×N pixels, with M = 15 and N = 7.
The templates intended to cover the entire head. The content of each template
was cross-correlated with the content of the next video frame. The best-matching
M ×N part of the next frame served as a starting point for the extraction of visual
features and was defined as the new template.

A commonly used technique for extracting features from images is based on
principal component analysis (PCA). For instance, in their lip-reading studies
Luettin et al. (1996) employed PCA on the visual lip-shape data. However,
a comparative study of (dynamic) features for speech-reading showed that a
‘delta’ representation, based on the differences in grey values between successive
frames, works better than a representation based on PCA. For this reason we used
the delta representation to generate our visual features.

The visual features were obtained as follows. The absolute values of the changes
of subsequent frames yielded the elements of a delta image, defined as

��x� y� = I�t +1� x� y�–I�t� x� y� (13.1)

with I�t� x� y� the grey value of the pixel at co-ordinate (x� y� of frame t (t represents
the frame number).

Auditory Features

The audio signal is transformed into the frequency domain using standard FFT
(256 points; sampling rate 11 kHz; one channel, one byte accuracy) in combination

EIS for Adaptive Multimodal Information Processing 367

with a Hamming window, yielding a sequence of vectors containing 26 Mel-scale
coefficients. Each vector represents an audio segment of 11.6 milliseconds, with
50% overlap between the segments. The Mel-scale vectors averaged over a duration
of approximately 125 milliseconds are represented as ‘audio frames’ (i.e. vectors
containing averaged Mel-scale coefficients). By subtracting subsequent frames, a
delta representation is obtained that corresponds to the visual delta representation.
The auditory features are vectors containing three delta representations obtained
at three different time lags, each of 125 msec, with an overlapping of 50%.

Modelling the Subsystems

The subsystems of PIAVI are modelled using evolving fuzzy neural networks
(EFuNNs; see Chapter 3). Each of the input and output nodes of an EFuNN has a
semantic meaning. EFuNNs are designed to facilitate the use of both data and fuzzy
rules in a connectionist framework. They allow for easy adaptation, modification,
rule insertion, and rule extraction. The unimodal visual mode of operation is
modelled as an EFuNN with 105 input nodes, 315 input membership functions
(3 per input node, i.e. representing the fuzzy representations ‘small’, ‘medium’, and
‘high’), 4 output nodes (for the four hosts), and 8 output membership functions
(2 per output, i.e. representing the fuzzy classifications ‘unlikely’ and ‘likely’). The
unimodal auditory mode of operation is modelled as an EFuNN with 78 input
nodes, 234 input membership functions, 4 output nodes, and 8 output membership
functions. The bimodal, early-integration mode of operation is modelled by an
EFuNN with the same dimensions except for the input. There are 183 input
nodes (105 for visual features plus 78 for auditory features) and 549 membership
functions. Finally, in the combined mode of operation the two unimodal modes and
the bimodal mode are combined. The higher-level concept subsystem is modelled
according to the principle of statistically based specialisation. The criterion for
classification is as follows. The output node with the largest activation defines the
class assigned to the input pattern.

Experimental Procedure

The EFuNNs assembling PIAVI are trained. To assess the generalisation perfor-
mance, the dataset is split into a training set and a test set, each containing ten
examples (ten frames of 125 msec each). The EFuNNs are trained on the training
set. The generalisation performance is defined as the classification performance
on the test set.

Results

The overall recognition rate achieved in the combined mode is 22% higher than
the recognition rate in the unimodal visual mode, 17% higher than the recognition
rate in the unimodal auditory mode, and 4% higher than the recognition rate in
the early-integration mode of operation.

368 Evolving Connectionist Systems

Figure 13.2 shows the results obtained in Case Study 1. The test frames are
shown on the x-axis (first ten for person one, etc.). The output activation values
of the four outputs are shown on the y-axis.

The experimental results confirm the main hypothesis of this research, that the
AVIS framework and its realisation PIAVI achieve a better performance when
auditory and visual information are integrated and processed together.

13.3.4 Case Study 2

The second case study attempts to improve and extend the results obtained in
the first case study by employing a larger (more realistic) dataset and by defining
aggregate features representing longer temporal intervals.

The Dataset

We (see Kasabov et al. (2000c)) recorded CNN broadcasts of eight fully visible
and audibly speaking presenters of sport and news programs. An example is
given in Fig. 13.3. All recordings were captured in a digital format. The digital
video files so obtained were edited with a standard video editor. This yielded

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1
AVIS - audio data results

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1
AVIS - visual data results

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1
AVIS - early combined results

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1
AVIS - higher level results

Fig. 13.2 The results obtained in Case Study 1. The test frames are shown on the x-axis (first ten for person
one, etc.). The output activation values are shown on the y-axis for the four outputs (one for each person).

EIS for Adaptive Multimodal Information Processing 369

Fig. 13.3 An example of a frame used in the dataset (Kasabov et al., 2000c).

video segments of one second length at F = 15 frames per second. Each segment
contains F +1 frames. The visual and auditory features were extracted from these
segments.

Visual Features

As in the first case study, the F +1 images (i.e. the frames of video data) contained
in each segment were transformed into a representation of the spatiotemporal
dynamics of a person’s face. The extraction of visual features in this case study
differed in three respects from the extraction in the first case study. First, in
segmenting the face from the background, a fixed template was used for each
person, instead of redefining the template with each new frame. The size of the
template was defined as M ×N pixels, with M = 40 and N = 20. Figure 13.4 shows
the face template used for the person displayed in Figure 13.3.

Second, the temporal extent of the aggregate features is extended over a one
second period to accommodate temporal variations over a longer interval. The
aggregate features were obtained as follows. The absolute values of the changes

Fig. 13.4 The face template used for video frames, applied on the speaker video data from Fig. 13.3.

370 Evolving Connectionist Systems

for a one second period (i.e. F+1 frames) are summed pixelwise, yielding an
average-delta image, the elements of which are defined as

��x� y� =∑
i=1�F � I�t +1� x� y� – I�t� x� y� �/F (13.2)

with I�t� x� y� the colour value of the pixel at co-ordinate (x� y� of frame t (t repre-
sents the frame number).

Third, a compressed representation of the delta image is used instead of a
representation based on all pixel values. The final aggregate visual features are
contained in a vector v, the elements of which are the summed row values and the
summed column values of the average-delta image. Formally, the elements v�i� of
v are defined as

v�i� =∑
j=1�N ��j� i�� for 1 <= i =< M (13.3a)

and

v =∑
i=1�M v�i� (13.3b)

Auditory Features

The auditory features are extracted according to the procedure described in the
first case study, except for the aggregated features which are obtained by averaging
over a one second interval.

Modelling the Subsystems

The unimodal visual mode of operation is modelled in an EFuNN with 60 (N +
M) input nodes, 180 input membership functions, and 16 output membership
functions. The bimodal mode of operation is modelled using an EFuNN with 86
input nodes and 258 membership functions. The higher-level decision subsystem is
not modelled explicitly. It is (partly) contained in the output layers of the EFuNNs.
The criterion for classification is that the output node with the largest activation
defines the class assigned to the input pattern.

Experimental Procedure

The experimental procedure used for simulating the two modes of operation was
as follows. The unimodal mode of operation was studied by presenting the visual
examples to the appropriately dimensioned EFuNN network (Experiments 1 and
2). In the bimodal mode of operation an EFuNN with an extended input was used
to accommodate the audiovisual input pattern (Experiment 3).

EIS for Adaptive Multimodal Information Processing 371

Experiment 1: Unimodal Processing

To assess the performance of PIAVI in the unimodal mode of operation the visual
subsystem was trained on a training set that contained 385 examples (corre-
sponding to a total of 385 seconds of video playing time). The test set contained
100 examples.

Experiment 2: Unimodal Processing with a Small Training Set

The setting is as in Experiment 1, but here a small training set is used (5 examples
per class). The test set contains 25 examples per class, except for the class corre-
sponding to speaker one which contains 5 examples only. An overall generalisation
performance of 75% correct classification was obtained.

Experiment 3: Bimodal Processing

To assess the performance of PIAVI in the bimodal mode of operation, 40 early
integrated audiovisual examples (5 per class) each of them having 86-feature were
presented to an EFuNN. An overall generalisation performance of 91% correct
classification on the test set was obtained after 1000 epochs (150 seconds of
simulation time).

Considerations are corroborated by the graphs in Fig. 13.5 displaying the values
v�i� as a function of i for ten examples of a single class. The peaks at i = 15 and i = 30
correspond to the dynamics of the eyes and mouth during a one second interval.

–0.05

0.05

0.15

0.25

0.35

0.45

0.55

0.65

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86

i

v(
i)

Fig. 13.5 Graphs showing dynamic, integrated visual (first 60) and audio (last 26) features ��i� as a function
of i for ten examples of one class (Kasabov et al., 2000c).

372 Evolving Connectionist Systems

Combination of the visual and auditory data in Experiment 3 yielded a major
improvement in generalisation performance (Table 13.1).

The contribution of the nonlinear EFuNNs to the results becomes evident
by considering the generalisation performances obtained with standard linear
statistical methods such as linear discriminant functions. Figure 13.6 displays a
plot of all auditory examples mapped on the first two discriminant functions.
Figure 13.7 shows the same plot for all visual examples. The mapping of the audio-
visual examples is displayed in Fig. 13.8. A subset of these examples is plotted
in Fig. 13.9 as a two-dimensional configuration obtained with a multidimen-
sional scaling procedure. The low-dimensional configuration represents the high-
dimensional configuration in audiovisual feature space by preserving the inter-
point distances as much as possible. The generalisation performance obtained in
the discriminant-function models (measured using the leaving-one-out procedure)
are 37.3%, 64.1%, and 66.4%, for the auditory, visual, and audiovisual examples,
respectively. Evidently, the EFuNNs contribute significantly to the generalisation
performances obtained in this case study.

13.3.5 Discussion

The results of the two case studies prove the added value of integrating auditory
and visual information for person identification. In the first case study, which used
a small training set, combining the auditory and visual information enhanced the
generalisation performance. In the second case study, the first experiment showed
that with a large number of training examples unimodal processing on the basis
of dynamic visual features leads to a perfect performance on a large dataset. This
finding is interesting in its own right. Behavioural studies suggest that humans are
not very good at identifying persons from their facial dynamics. Nevertheless, the
unimodal PIAVI system managed to deal with this task perfectly well. The second
and third experiments showed that adding dynamic auditory input to the visual
input enhances the identification performance considerably. In these experiments
a smaller training set was used. From a practical viewpoint, the use of smaller

Table 13.1 Generalisation performances for unimodal (visual
data) and bimodal (visual and auditory data) experiments.

Person Generalisation performance (%)

Unimodal Bimodal

1 100 100
2 28 88
3 92 96
4 72 80
5 60 64
6 48 96
7 100 100
8 96 100

EIS for Adaptive Multimodal Information Processing 373

Fig. 13.6 Mapping the auditory dataset on the first two linear discriminant functions (Kasabov et al., 2000c).

training sets facilitates the speed at which the PIAVI system in its bimodal mode
of operation learns to classify persons from video data.

13.4 Person Verification Based on Auditory and
Visual Information

13.4.1 Problem Definition

Biometric verification can be defined as a process of uniquely identifying a
person by evaluating one or more distinguishing biological traits. Unique identi-
fiers include fingerprints, hand geometry, retina, iris patterns, face image, and
voice. There are many biometric features that distinguish individuals from each
other, thus many different sensing modalities have been developed (Brunelli and
Falavigna, 1995). These identifiers may be used individually, as exemplified by the
iris scan system deployed in the banking sector and currently being tested for
airport security (Luettin et al., 1996).

Over the past few years, interest has been growing in the use of multiple
modalities to solve automatic person verification problems. The motivation for
using multiple modalities is multifold. In the first instance different modalities

374 Evolving Connectionist Systems

Fig. 13.7 Mapping the visual dataset on the first two linear discriminant functions (Kasabov et al., 2000c).

measure complementary information and by this virtue multimodal systems can
achieve better performance than single modalities. Single features may fail to be
exact enough for identification of individuals.

A person-verification system is essentially a two-class decision task where the
system can make two types of errors. The first error is a false acceptance, where an
impostor is accepted. The second error is false rejection, where a true claimant is
rejected. False acceptance rate (FAR) and false rejection rate (FRR) are calculated
according to the following equations,

FAR = IA

IT

�1� FRR = CR

CT

(13.4)

where IA is the number of impostors classified as true claimants, IT is the total
number of impostors presented, CR is the number of true claimants classified as
impostors, and CT is the total number of true claimants presented. The trade-offs
among these errors are adjusted using an acceptance threshold.

In Ghobabklou et al. (2004) a multimodal ECOS is proposed for person verifi-
cation, based on speech and face image integrated features. This system is described
below.

EIS for Adaptive Multimodal Information Processing 375

Fig. 13.8 Mapping the integrated visual-auditory dataset on the first two linear discriminant functions (Kasabov
et al., 2000c).

13.4.2 Adaptive Multimodal Person Verification

Here we use an implementation of a simple ECOS, called the evolving classifier
function (ECF; see Chapter 3). The ECF algorithm classifies input data into a
number of classes and finds their class centres in the n-dimensional input space by
‘placing’ a rule node in the evolving layer. Each rule node is associated with a class
and an influence (receptive) field representing a part of the n-dimensional space
around the rule node. Generally such an influence field in the n-dimensional space
is a hypersphere. Essentially each person is modelled by a number of rule nodes
that represent this person. Here the recall algorithm of ECF was modified for the
task of person verification. Accordingly we call it the verification algorithm. The
verification algorithm consists of the following steps.

• With the trained ECF module, when a new test sampleI is presented, first it
is checked to see whether it falls within the influence field of the rule nodes
representing the claimed identity of the sampleI . This is achieved by calculating
the Euclidean distance between this sample and appropriate rule nodes, then
comparing this distance Di with the corresponding influence field Infi. The
sample I is verified as person i if the relation (3.5) is satisfied.

376 Evolving Connectionist Systems

Fig. 13.9 Multidimensional scaling map of the Euclidean distance in the audiovisual space into two dimensions
(vp.00n means the vector of the nth example of person p; only five examples per person have been mapped)
(Kasabov et al., 2000c).

Di <= Inf i (13.5)

• If the sample I does not fall in the influence field of any existing rule node,
� Find the rule node which has the shortest distance to this sample; note this

distance as Dmin �� If this distance Dmin is less than a preset acceptance threshold �, the sample I
is verified as person i. Otherwise, this sample is rejected by this verification
module.

This verification algorithm was applied to speaker face image, and integrated
verification modules. Figure 13.10 illustrates the overall process of an adaptive
person-verification system.

13.4.3 Integrated Speech and Image Feature Selection

Features obtained from speech and face images of persons were merged to form
integrated input features. There are various strategies of combining multimodal

EIS for Adaptive Multimodal Information Processing 377

Speech or face image
data

Find D(min)

Verified

ECOS model

D(min) < θ?

Feature Extraction

Yes

No

Signal pre-processing

Falls in influence field of the claimed
identity?

Rejected

Yes

No

Fig. 13.10 Overall view of an adaptive connectionist person-verification system.

sources of information. In this approach, speech and face image information
were integrated at the feature level. In a particular implementation, there were
100 input features in a speech sample and 64 input features in a face image
sample. These two sets of features were concatenated to form integrated input
features.

In one implementation, the speech data were captured using a close-to-mouth
microphone. The speech was sampled at 22.05 kHz and quantized to a 16 bit
signed number. In order to extract Mel frequency cepstrum coefficients (MFCC) as
acoustic features, spectral analysis of the speech signal was performed over 20 ms
with Hamming window and 50% overlap. Discrete cosine transformation (DCT)
was applied on the MFCC of the whole word to obtain input feature vectors.

The images were captured using a Web-cam with a resolution of 320×240. Once
a new image was captured, features were extracted using the composite profile
technique. The composite profile features were composed of the average intensity
value of the columns in the image followed by the average value of rows in the
image. It is a relevant feature to characterise symmetric and circular patterns, or
patterns isolated in a uniform background. This feature can be useful to verify the
alignment of objects. In order to reduce the number of features, the interpolation
technique was applied to the 560 features.

13.4.4 A Case Study Implementation

In this study, speech data were taken from seven members of the KEDRI Institute
(http://www.kedri.info). As speech is text-dependent, all speakers were requested
to say the word ‘security’ for speech-based speaker verification. Five samples from

378 Evolving Connectionist Systems

Fig. 13.11 ECF performance on integrated features: (a) number of rule nodes created versus various influence
field values; (b) correct acceptance rate versus acceptance thresholds; (c) false acceptance rate (FAR) versus
acceptance thresholds; (d) false rejection rate (FRR) versus acceptance thresholds.

Fig. 13.12 A software implementation of a system that consists of a speech recognition module, image
recognition module, and higher-level decision making for a person verification or person identification application
(Ghobaklou et al., 2004).

EIS for Adaptive Multimodal Information Processing 379

Table 13.2 Performance of the speaker recognition model, face recognition module,
and the integration model.

Person Speaker recognition
model (%)

Face recognition
model (%)

Integration
model (%)

A 90 75 90
B 80 80 90
C 70 65 80
D 85 90 95
E 90 80 95
F 85 85 90
G 95 80 100
Average 85 79.29 91.43

each speaker were collected to form the training dataset. Another five samples
from each of these speakers were used to form a testing dataset. In a similar
fashion the face images of the same people were captured to prepare training and
testing datasets. The input features from speech and face image were integrated
according to the method described in Section 13.4.

A person-verification system was built on integrated voice and face features
using ECF. Each integrated sample has 164 input features. The test results are
shown in Fig. 13.11.

The results in Fig. 13.11 show that the smaller the maximum influence field,
the more rule nodes are allocated for each person. The best ECF performance was
achieved with correct acceptance rate of 97% and FAR error of just less than 0.5%.

Figure 13.12 shows a software implementation of a system that consists of a
speech-recognition module, image-recognition module and higher-level decision
making for person-verification or person-identification applications (Ghobaklou
et al., 2004).

The system is tested on a small dataset. The results shown in Table 13.2 illustrate
the improvement of accuracy when the speech and the image input data are
integrated.

13.5 Summary and Open Problems

We have introduced a framework and two systems that integrate auditory and
visual information. The framework facilitates the study of:

• Different types of interaction between modules from hierarchically organised
subsystems for auditory and visual information processing

• Early and late integration of the auditory and the visual information flows,
• Dynamic auditory and visual features
• Pure connectionist implementations at different levels of information processing
• Evolving fuzzy neural networks that allow for learning, adaptation, and rule

extraction.

380 Evolving Connectionist Systems

The integrated processing of auditory and visual information may yield:

• An improved performance on classification tasks involving information from
both modalities and

• Reduced recognition latencies on these tasks.

The framework has the potential for many applications for solving difficult AI
problems. Examples of such problems are: adaptive speech recognition in a noisy
environment, face tracking and face recognition, person identification, person
verification tracking dynamic (moving) objects, recognising the mood or emotional
state of subjects based on their facial expression and their speech, solving the blind-
source separation problem. Through solving these problems, the development of
intelligent multimodal information systems can be facilitated.

For the integration of auditory and visual information the following open
questions need to be addressed.

1. At which level and to what degree should the auditory and visual information
processes be integrated? The AVIS framework accommodates integration at
multiple levels and at various degrees. It seems that early integration works
fine, but a further fine-tuning is required to obtain a better insight into the
problem.

2. How should time be represented in an integrated audiovisual information-
processing system? In our two case studies we examined bimodal processing
using an aggregate vector representation with time included. This repre-
sentation turned out to be especially effective when using longer time
intervals. For shorter time intervals other ways of representing time should be
investigated.

3. How should adaptive learning be realised in an integrated audiovisual infor-
mation processing system? A deeper investigation of ECOS is realisable and will
most probably lead to good results.

4. How should new knowledge be acquired about the auditory and visual inputs
of the real world? Translating the hidden representations of ECOS into rules
provides a first answer to this question.

5. How does the neuro-genetic principle (see Chapter 9) apply to multimodal
information processing?

13.6 Further Reading

For further details of the ideas discussed in this chapter, refer to Kasabov et al.
(2000c), Ghobakglou and Kasabov (2004), Ghobakglou et al. (2004).

Further material on the issues discussed in this chapter can be found as follows.

• Sources of Neural Structure in Speech and Language Processing (Stork, 1991)
• Integrating Audio and Video Information at Different Levels (Waibel et al., 1997)
• Using Lip Movement for Speech Recognition (Stork and Hennecke, 1996; Massaro

and Cohen, 1983; Gray et al., 1997; Luettin et al., 1996)
• Person Identification and Verification (Brunelli and Falavigna, 1995)

14. Evolving Intelligent Systems
for Robotics and Decision Support

This chapter presents examples of how the methods of EIS and ECOS in particular
can be applied on various applications for robotics and decision support. In the
examples here we have used some of the methods presented in Part I of the
book, but more sophisticated methods can be further developed and applied in
the future on the same problems. The reason for using ECOS is that many social
and environmental systems are characterised by a continuous change and by
a complex interaction of many variables over time; they are evolving. One of
the challenges for information sciences is to be able to represent the dynamic
processes, to model them, and to reveal the ‘rules’ that govern the adaptation
and the variable interaction over time. Decision making, related to complex and
dynamically changing processes, requires sophisticated decision support systems
(DSS) that are able to:

• Learn and adapt quickly to new data in an online mode.
• Continuously learn patterns of variable relationship from data streams.
• Deal with vague, fuzzy, and incomplete information, as well as with crisp infor-

mation.

Such systems can be realised as DSS or as intelligent robots. The chapter includes
the following topics.

• Adaptive learning robots
• Modelling of evolving financial and socioeconomic processes
• Adaptive Environment risk evaluation
• Summary and open problems
• Further reading

14.1 Adaptive Learning Robots

14.1.1 Multimodal Interactive Robots

The robotics field is growing with more robots being created continuously for
different purposes (see Fig. 14.1). Intelligent robots should be able to commu-
nicate through spoken commands and images. They should be able to recognise

381

382 Evolving Connectionist Systems

Fig. 14.1 The robotics field is growing with more robots being created continuously for different purposes.

a command (e.g. ‘bring an orange’), analyse the meaning of the command (e.g.
to find and bring an orange), recognise the object (e.g. image recognition of an
orange in a scene), and act appropriately.

A small example of this scenario is shown in Fig. 14.2a (a functional block
diagram), Fig. 14.2b (examples of recognisable objects), and Fig. 14.2c (a block
diagram of a system realisation).

Furthermore, an intelligent robot should be able to learn new commands and
recognise new objects on the fly, without forgetting previously learned objects.
Such an experiment with the use of ECOS is presented in Zhang et al. (2004).

14.1.2 Adaptive Multiple Robot Control

When several robots take part in a common task, e.g. playing football at a robo-
cup competition, the robots should adapt their strategy on the fly depending on
the current circumstances, e.g. the way the opponent plays.

In Huang et al. (2005) an adaptive control of the positioning of the robot players
on the soccer field is implemented with the use of the ECOS ECF (Fig. 14.3. The
positioning rules can evolve and change during the match, rather than the robot
team playing with fixed positioning rules.

14.2 Modelling of Evolving Financial and
Socioeconomic Processes

14.2.1 Adaptive Prediction of Financial Indexes

Financial data may change dynamically where many variables are involved. For the
prediction of financial indexes, adaptive incremental learning models are needed.
ECOS would be suitable techniques for the purpose as illustrated below.

EIS for Robotics and Decision Support 383

(a)

Verbal Instruction

Parsing and Speech Recognition

Object Detection Based on Image

Robot Action

(c)

Adaptive Speech
Recognition Module

(ECoS)

Adaptive Image
Recognition Module

(ECoS)

Incremental
Feature

Selection
System

Interface

Sensory
Inputs: Sound,

Image, …

Output/
Action

(b)

Fig. 14.2 A small example of a multimodal information processing robot for recognising spoken commands
and image objects: (a) a functional block diagram; (b) examples of recognisable objects; (c) a block diagram
of a system realisation for adaptive multimodal speech command recognition and object/image recognition and
action robot.

Example

Prediction of the exchange rate Euro/US$ (1, 2, 3, and 4 weeks ahead) using three
input variables: Exchange Rate, Euro/Yen, Stock-E/US, with four time lags each, is

384 Evolving Connectionist Systems

Fig. 14.3 In Huang et al. (2005) an adaptive control of the positioning of the robot players on the soccer field
is implemented with the use of the ECOS ECF (Chapter 3). The positioning rules can evolve and change during
the match, rather than the robot team playing with fixed positioning rules.

shown in Fig. 14.4 along with the process of incremental, online creation of rule
nodes in an EFuNN model and node aggregation at periodical time intervals.

Such online learning and prediction systems can be applied for:

• Stock index prediction
• Exchange rate prediction
• Company profit and loss prediction
• Company bankruptcy prediction
• Quarterly interest rate change prediction

0 10 20 30 40 50 60 70
0.85

0.9

0.95

1

1.05

D
es

ir
ed

 a
nd

 A
ct

ua
l

0 10 20 30 40 50 60 70
0

10

20

30

40

N
um

be
r

of
 r

ul
e

no
de

s

Fig. 14.4 Prediction of the exchange rate Euro/US$ (1, 2, 3, and 4 weeks ahead) using three input variables:
Exchange Rate, Euro/Yen, Stock-E/US, with four time lags each, along with the process of incremental, online
creation of rule nodes in an EFuNN model and node aggregation at periodical time intervals.

EIS for Robotics and Decision Support 385

14.2.2 Modelling of Evolving Macroeconomic Clusters

Countries and regions can be grouped (clustered) together based on similarity,
measured on the basis of several macroeconomic variables, such as GDP, inflation
rate, unemployment rate, index of goods, and so on. With a quarterly flow of
information on these variables, the clusters may change, indicating a trend in the
development of some countries or group of countries.

This can be traced and analysed with the use of evolving clustering methods,
such as ECM and ESOM from Chapter 2, as shown in the example below (see
Kasabov (2006), Rizzi et al., 2003). The data used in the example are given in
Appendix D and some clusters are shown in Fig. 14.5a,b.

Example: Tracing Evolving Macroeconomic Clusters in Europe/United States

In Fig. 14.5a the evolved clusters in an EFuNN model, when data from 1994
until 1998 are used, are shown. The upper figure shows a plot of the rule nodes:
their cluster centres and receptive fields in the input space ‘x = Unemployment
(t −1), y = GDP(t −1)’. The lower figure shows the same nodes in the input space
‘x = CPI�t −1� and y = Interest rate(t −1)’. The data examples are represented as
‘o’. The rule nodes are numbered in a larger font with the consecutive numbers of
their evolution. Data examples are numbered from 1 to 45 meaning the consecutive
input vectors used for the evolution of the EFuNN in the shown order. BE45 for
example means the four parameter values for Belgium for the year 1994 and 1995
as (t = 1) and (t) input values to the EFuNN model.

Figure 14.5b shows the changes of the clusters from Fig. 14.5a when data for
1999 are added. That will help to trace the evolving macroeconomic clusters in
Europe/United States over time. The figure shows the evolved clusters, when the
EFuNN model was updated on the 1999 data in the input space ‘x = Unemployment
rate (t − 1), y = GDP per capita(t − 1)’ (upper figure), and in the input space
‘x = CPI�t −1� and y = Interest rate (t −1)’ (lower figure). The data examples and
the cluster centres (rule nodes) are represented in the same way as in Fig. 14.5a.

14.3 Adaptive Environmental Risk of Event Evaluation

14.3.1 Problem Definition

We are given a domain dataset, or a stream of data: D = �X1� X2� · · · � Xi� � � ��, where
Xi are vectors, each of them consisting of k input variables Xi = �x1� x2� · · · � xk�and
an output variable yi that takes a value of 1 (an event has occurred) and 0 (event
has not occurred), for a new vector X�new� to predict the risk, between 0 and 1, for
the event to happen.

This problem is very common in environmental modeling, e.g. based on
geographical locations and environmental variables, to evaluate the risk of:

• Establishment of invasive species at different locations in the world (Worner,
1988, 2002; Gevrey et al., 2006)

386 Evolving Connectionist Systems

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
BE45 DK45 DE45 EL45 ES45 FR45 IR45 IT45 NL45 AS45 IT45 IR45 SW45 UK45 US45 BE56 DK56 DE56

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
EL56 ES56 FR56 IR56 IT56 NL56 AS56 PT56 FI56 SW56 UK56 US56 BE67 DK67 DE67 EL67 ES67 FR67

 37 38 39 40 41 42 43 44 45
IR67 IT67 NL67 AS67 PT67 FI67 SW67 UK67 US67.

1

2 3

4

5

6

7 8

910

11

12

13

14

1516

17

18

19

20

21

22 23

24 25

26

27

28

29

30

31

32

33

34

35

36

37 38

3940

41

42

43

44

45

1

2

3

4
5

6

7

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

21

22
23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

1

2

(a)

3

4

5

6 7

Fig. 14.5 (a) The evolved clusters in an EFuNN model when macroeconomic data are used. The upper figure
shows a plot of the rule nodes, their cluster centres and receptive fields in the input space ‘x= Unemployment
(t− 1�� y = GDP�t− 1�’. The lower figure shows the same nodes in the input space ‘x CPI(t− 1� and y =
Interest rate(t − 1)’. The data examples are represented as o. The rule nodes are numbered in a larger font
with the consecutive numbers of their evolvement. Data examples are numbered from 1 to 45 meaning the
consecutive input vectors used for the evolvement of the EFuNN in the shown order. BE45 for example means
the four parameter values for Belgium for the year 1994 and 1995 as (t = 1) and (t� input values to the
EFuNN model. (Continued overleaf)

EIS for Robotics and Decision Support 387

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

(b)

18

19

20

21

22
23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52
53

54

55

56

57

58

59

60

1

2

3

4

5

6

1

2 3

4

5

6

7 8

910

11

12

13

14

1516

17

18

19

20

21

22 23

2425

26

27

28

29

30

31

32

33

34

35

36

37 38

3940

41

42

43

44

45

46

47

48

49

50

51

52 53

5455

56

57

58

59

60

1

2

3

4

5

6

Fig. 14.5 (continued) (b) The changes of the clusters from (a) when new data for 1999 are added. That
will help to trace the evolving macroeconomic clusters in Europe/U.S. over time. The figure shows the evolved
clusters when the EFuNN model was updated on the 1999 data in the input space ‘x = Unemployment rate
(t − 1), y = GDP per capita(t − 1)’ (upper figure), and in the input space ‘x = CPI(t − 1) and y = Interest
rate (t − 1)’(lower figure). The data examples and the cluster centres (rule nodes) are represented in the same
way as in (a).

• Earthquakes
• Floods and other disasters
• Spread of infectious disease
• Global Climate Change
• And others

Several approaches can be used for solving the above problem:

• A global regression model. This model is difficult to adapt on new data without
using the previous data.

388 Evolving Connectionist Systems

• A personalised model, using WKNN or WWKNN, or other methods for trans-
ducive reasoning (see Chapter 1), where the risk is calculated based on distance
to nearest neighbouring samples. This approach may produce good results, but
it will depend on the distribution of the data.

• A local adaptive model that complements the above two approaches: an example
is presented and illustrated in the next two sections.

14.3.2 Adaptive Local Modelling for Risk Evaluation

1. The data from the problem space D is partitioned into n clusters using an
adaptive, evolving clustering method (e.g.ECM, see Chapter 2): �C1� C2� · · · � Cn� .
The number of the clusters is not specified in advance.

2. Each cluster Ci ∈ �C1� C2� · · · � Cn� is then represented by a pair of vectors �Xc
i � p

c
i �,

where Xc
i is the mean vector of the input variables for this cluster and pc

i is the
risk (probability) of event to occur in this cluster:

Xc
i =

�Ci �∑

j=1
X

�Ci�
� pc

i �Y �x1� x2� · · · � xk� =

�Ci �∑

j=1
p�y�x1� x2� · · · � xk�

�Ci�
� i = 1� · · ·n� (14.1)

3. Pc and Xc obtained from above are used to fit response surfaces as a function
of the predictors; here a local supervised learning method can be used, such as
DENFIS (see Chapter 3).

4. The evolved model is used to predict the risk of event for a new input vectorX�new�.

14.3.3 A Case Study on Predicting the Establishment
of Invasive Species

This section describes a model based on ECM evolving clustering and DENFIS for
predicting the establishment potential of a pest insect into new locations, using
as a case study Planocuccus citri (Risso), the citrus mealybug (Worner 1988, 2002;
Soltic et al., 2004; Gevrey et al., 2006). The model is based on the relationship
between climate at locations from the world map and P. citri presence or
absence.

If new yet unseen data become available the model will adapt its structure and
produce output to accommodate the new data. The model can be trained incre-
mentally and produce rules that have the potential to explain the relationship
between the climate factors and the potential of pest establishment. The
evolving model proposed here can complement qualitative assessments and the
knowledge of expert advisers, and can be used to assess the possibility of estab-
lishment before an actual introduction of the pest insect. Finally, predictive
maps are produced for visual inspection, showing general trends and possible
risk spots.

EIS for Robotics and Decision Support 389

The meteorological data for more than 7000 worldwide locations, where the
Planocuccus citri (Risso) has been recorded as either present (223 locations) or
considered absent, was assembled from published sources (Lora Peacock, unpub-
lished data; PhD). It is important to note that in this dataset, locations where the
species is recorded as absent may be either areas where P. citri has never had
the opportunity to establish, or has not been found, rather than the fact that the
environment is not suitable for its establishment. Each location was described by
a selection of temperature and moisture attributes (predictor variables) known to
indicate the climatic suitability of the habitat for insect establishment: maximum
summer temperature (Tmax�, minimum winter temperature (Tmin�, mean total
rainfall (Rmean�, annual actual evapotranspiration (AET), and an aridity index
represented by the ratio of precipitation/ potential evapotranspiration (P/PE) with
low P/PE index indicating dryness.

After clustering the data with the use of ECM, 20 clusters were created; for each
of them a risk (probability of event) was calculated as in Eq. (14.1). As an example,
the samples clustered in cluster number 4 with a probability of event 0.73 are
mapped back on the geographical map and shown in Fig. 14.6.

Then cluster information is used to train a DENFIS model. The DENFIS model
predicts better than a global regression model the risk of the pest establishment
as tested on real data.

The DENFIS prediction model is then used to calculate the risk at any location
of the world map as shown as bar graphs in Fig. 14.7.

Fig. 14.6 Spatially distributed 454 locations are grouped by the ECM clustering method into 20 clusters. The
number associated with each cluster indicates the ratio between the number of locations occupied by the insect
P. citri and the total number of locations. The risk of establishment of the insect in this cluster is measured as
probability. Only cluster 4 is shown in the figure (the biggest cluster, containing 100 locations) with a risk of
insect establishment of 0.73.

390 Evolving Connectionist Systems

–150 –100 –50 0 50 100 150

–80

–60

–40

–20

0

20

40

60

80

Longitude

L
at

itu
de

Risk map

0

0

0.2

0.2

0.2

0.2

0.2
0.

2

0.2

0.2

0.
2

0.
2

0.
2

0.2
0.2

0.2

0.4

0.4

0.4

0.
4

0.4

0.4

0.4

0.
4

0.
4

0.
4

0.4

0.
4

0.4

0.4

0.
4

0.4

0.4

0.6

0.6 0.
6

0.6

0.
6

0.6

0.
6

0.6

0.6

0.
6

0.6

0.6

0.
6

0.6

0.
6

0.
6

0.6

0.
6

0.6

0.
8

0.
8

0.
8

0.8

0.8

0.8

0.
8

0.8 1

0.8

Fig. 14.7 A world risk map for the establishment of the insect P. citri from Fig. 14.6 is developed with the use
of a trained ECOS DENFIS prediction model to calculate the risk at any location of the world map. If new data
become available, e.g. the pest is established at new locations, or the climate is changing, this information can
be added to the ECM clusters and to the DENFIS model to update this map dynamically.

If new data become available, e.g. the pest is established at new locations, this
information can be added to the ECM clusters and to the DENFIS model to update
the model and the map from Fig. 14.7 dynamically.

14.4 Summary and Open Questions

This chapter only illustrates the large number of various application problems that
can be solved with the use of EIS and ECOS in particular. New evolving learning
methods can be developed in the future in the search for more efficient solutions
for problems such as

• Spread of viruses
• Spread of pandemic diseases
• Predicting earthquakes
• Predicting tsunami events
• Predicting solar eruptions and cosmic events
• Searching for signals from extraterrestrial intelligence (see WWW of the Institute

‘Search for Extraterrestrial Intelligence’, SETI: http:// www.seti.com)
• Predicting global Climate changes

EIS for Robotics and Decision Support 391

14.5 Further Reading

• Adaptive Robots (Fukuda et al., 1997)
• Applications of Evolving Fuzzy Rule-based System for Control (Angelov, 2002;

Angelov and Filev, 2004; Angelov et al., 2004)
• Evolving Fuzzy Systems for Real-time Landmark Recognition (Zhou and Angelov,

2006)
• Adaptive, Evolving Robots (Nolfi and Floreano, 2000)
• EFuNN for Tennis Coach Decision Support (Bacic, 2004)
• Adaptive Fuzzy Decision Support Systems (Furuhashi et al., 1993, 1994)
• Macroeconomic Decision Support Systems (Rizzi et al., 2003)
• Ecological Modelling (Worner, 1988, 2002; Gevrey et al., 2006, Soltic et al., 2004)
• Searching for Signals from Extraterrestrial Intelligence (www.seti.com)

15. What Is Next: Quantum Inspired
Evolving Intelligent Systems?

This chapter presents some promising future directions for the development of
methods and EIS inspired by the principles of quantum processes, as part of the
whole process of information processing (see Fig. ??). Many open questions and
challenges are presented here, to be addressed in future research. The chapter
discusses the following issues.

• Why quantum inspired EIS?
• Quantum information processing
• Quantum inspired optimisation techniques
• Quantum inspired connectionist systems
• Linking quantum to neuro-genetic information processing: is this the challenge

for the future?
• Summary and open problems
• Further reading

15.1 Why Quantum Inspired EIS?

Quantum computation is based upon physical principles from the theory of quantum
mechanics (Feynman et al., 1965). One of the basic principles that is likely to trigger
the development of new methods and EIS is the linear superposition of states.

At a macroscopic or classical level a system exists only in a single basis state
as energy, momentum, position, spin, and so on. However, at a microscopic or
quantum level, the system at any time represents a superposition of all possible
basis states. At the microscopic level any particle can assume different positions
at the same time, can have different values of energy, can have two values of the
spins, and so on. This superposition phenomenon is counterintuitive because in
classical physics one particle has only one position, energy, spin, and so on.

If the system interacts in any way with its environment, the superposition is
destroyed and the system collapses into one single real state as in classical physics.
This process is governed by a probability amplitude (Feynman et al., 1965). The
square of the intensity for the probability amplitude is the quantum probability
to observe the state. Quantum mechanical computers and quantum algorithms try
to exploit the massive quantum parallelism which is expressed in the principle of
superposition.

393

394 Evolving Connectionist Systems

The principle of superposition can be applied to many existing methods of EIS,
where instead of a single state (e.g. a parameter value, a finite automata state, or a
connection weight, etc.) a superposition of states will be used described by a wave
probability function, so that all these states will be computed in parallel increasing
the speed of computation exponentially And not only the speed can be increased,
the accuracy of the solutions would also increase. New problems, that have not
been possible to solve thus far, may be possible to solve with the use of quantum
inspired EIS (QEIS).

There are already examples of how much more efficient a quantum inspired
algorithm can be when compared to classical algorithms for some specific
tasks. Quantum mechanical computers were proposed in the early 1980s and a
description was formalised in the late 1980s (Benioff, 1980). This kind of computer
proved to be superior to classical computers in various specialized problems. Many
efforts were undertaken to extend the principal ideas of quantum mechanics to
other fields of interest. There are well-known quantum algorithms such as Shor’s
quantum factoring algorithm (Shor, 1997) and Grover’s database search algorithm
(Grover, 1996). Hogg extended the work of Grover in order to demonstrate the
application of quantum algorithms in the context of combinatorial search (Hogg
and Portnov, 2000).

15.2 Quantum Information Processing

The concept of quantum computing utilises the special nonlocal properties of
the quantum phenomena. A quantum atomic or subatomic particle (e.g. atoms,
electrons, protons, neutrons, bosons, fermions, photons) exists in a probabilistic
superposition of states rather than in a single definite state. For example, an
electron circling around a nucleus jumps to different orbits, states, due to absorbing
or releasing energy (Fig. 15.1). Particles in general are characterized by: charge,
spin, position, velocity, and energy.

Some principles, assumptions, and facts in quantum information processing are
listed below:

• Heisenberg’s uncertainty principle: Both the position and the momentum of an
electron, or generally, of a particle, cannot be known, because to know it means
to measure it, but measuring causes interfering and change of both the position
and the momentum. Making an observation of the system ‘collapses’ the system
to one possible state, or universe.

• The superposition principle: A particle can be in several states at the same time,
with certain probabilities. It is illustrated by Schroedinger by his famous thought
experiment of seeing with one eye open, a creature (a cat) in both alive and
dead states with certain probabilities (see also Koch and Hepp, 2006).

• The entanglement principle: Two or more particles, regardless of their location,
are in the same state with the same probability. The two particles can be viewed
as ‘correlated’, undistinguishable, or ‘synchronised‘, coherent. An example is a
laser beam consisting of millions of photons having the same characteristics
and states.

What Is Next: Quantum Inspired EIS? 395

Electron

Electron

Nucleus

Nucleus

Fig. 15.1 Heisenberg’s uncertainty principle: both the position and the momentum of an electron, or generally
of a particle, cannot be known, because to know it, means to measure it, but measuring causes interfering and
change of both the position and the momentum.

• Electromagnetic radiation: Emitted in discrete quanta whose energy E is propor-
tional to the frequency:

E = h� f� (15.1)

where h is the Max Planck constant (approx. 6.62608 . 10−34� and f is the frequency.
The advantage of quantum computing is that, while a system is uncollapsed, it

can carry out more computing than a collapsed system, because, in a sense, it is
computing in an infinite number of universes at once.

Ordinary computers are based on bits, which always take one of the two values
0 or 1. Quantum computers are based instead on what are called Q-bits (or qubits).
A Q-bit may be simply considered as the spin state of an electron. An electron can
have spin Up or spin Down; or three quarters Up and one quarter Down. A Q-bit
contains more information than a bit, but in a strange sense, not in the same sense
in which two bits contain more information than a bit.

The state of a Q-bit can be represented as below, where � and � are complex
numbers that specify the probability amplitudes of the corresponding states 0
and 1.

��� = ��0�+��1� (15.2)

Because the Q-bit can only be in these two states, it should satisfy the condition:

���2 +���2 = 1 (15.3)

396 Evolving Connectionist Systems

Example

A three-bit register can store 000 or 001 or 010 or 100 or 011 or 101 or 110 or
111, whereas a three-qubit register can store 000 and 001 and 010 and 100 and 011
and 101 and 110 and 111 at the same time, each to different probabilities. Storage
capacity increases exponentially, 2N where N is the size of the register. Because the
numbers are stored simultaneously in the same register, operations with them can
also be done simultaneously, so a quantum ‘computer’ has 2N processors working
in parallel.

The state of a Q-bit can be changed by an operation called a quantum
gate. A quantum gate is a reversible gate and can be represented as a unitary
operator U acting on the Q-bit basis states. The defining property of a unitary
matrix is that its conjugate transpose is equal to its inverse. There are several
quantum gates already introduced, such as the NOT gate, controlled NOT gate,
rotation gate, Hadamard gate, and so on. For example, a rotation gate is repre-
sented as

U�	� =
[

cos 	 − sin 	
sin 	 cos 	

]

(15.4)

15.3 Quantum Inspired Evolutionary
Optimisation Techniques

15.3.1 General Principles

Quantum inspired methods of evolutionary computation (QIEC) have already been
discussed in Han and Kim (2002) and Jang et al. (2003), that include: genetic
programming (Spector, 2004), particle swarm optimizers (Liu et al., 2005), and
finite automata and Turing machines (Benioff, 1980).

The quantum inspired evolutionary computation (QIEC) methods for optimi-
sation are based on the following principles.

• Whereas in EC the representation of individuals (‘chromosomes’) is usually
made in the form of bit strings, real-valued vectors, symbols, and the like, the
QIEC uses a q-bit representation based on the concept of q-bits. Each q-bit is
defined as a pair of numbers (�, �). A Q-bit individual is a string of m q-bits
and is represented as

[
�1 �2 � � � �m

�2 �2 � � � �m

]

(15.5)

where the following holds for i = 1� 2� � � �� m,

��i�2 +��i�2 = 1 (15.6)

What Is Next: Quantum Inspired EIS? 397

• Evolutionary computing with Q-bit representation has a better characteristic of
population diversity than other representations, because it can represent linear
superposition of states probabilistically. Here, only one Q-bit individual with
m q-bits is enough to represent 2m states whereas in binary representation,
2m individuals will be required for the same.

• The Q-bit representation leads to a quantum parallelism in the system as it
is able to evaluate the function on a superposition of all possible inputs. The
output obtained is also in the form of superposition which needs to be collapsed
to get the actual solution.

• In QIEC, the population of Q-bit individuals at time t can be represented as

Q�t� =
qt
1� q

t
2� � � � � qt

n� (15.7)

where n is the size of the population.

15.3.2 Quantum Inspired Evolutionary Particle Swarm
Optimisation Algorithms

The pseudocode for an algorithm, called QEA, proposed by Han and Kim is given
in Fig. 15.2. It extends the PS algorithm from chapter 6.

Quantum inspired swarm optimization algorithm by Han and Kim
(See the text for an explanation of the notations)

begin
t ← 0

i) initialize a population of Q-bit individuals, Q�t�

ii) make P�t� by observing the states of Q�t�

iii) evaluate P�t�

iv) store the best solutions among P�t� into B�t�

while (not termination condition) do
begin
t ← t + 1

v) make P�t� by observing the states of Q�t − 1�
vi) evaluate P�t�

vii) update Q�t� using Q-gates
viii) store the best solutions among B�t − 1� and P�t� into B�t�

ix) store the best solution b among B�t�

x) if (migration condition)
then migrate b or bt

j to B�t� globally or locally, respectively
end

end

Fig. 15.2 The pseudocode for a quantum inspired evolutionary algorithm, called QEA, proposed by Han and
Kim (2002).

398 Evolving Connectionist Systems

In the above QEA algorithm the population of Q-bit individuals at time t can
be represented as Q�t� =
qt

1� q
t
2� � � � � qt

n� where n is the size of the population. The
rotation gate which is used as the Q-gate is represented as

U�	� =
[

cos 	 − sin 	
sin 	 cos 	

]

(15.8)

15.4 Quantum Inspired Connectionist Systems

15.4.1 Motivation Behind Quantum Inspired Neural Networks

Recent research activities focus on a combination of quantum computation and
artificial neural networks. Neural networks are biological inspired information-
processing systems that were shown to be powerful in solving classification
problems, predicting developments, and controlling robots because of their fault
tolerance, robustness, and their ability of massive parallel processing. Considering
quantum neural networks seems to be important for two reasons.

First, there is evidence for the essential role that quantum processes may play in
realizing information processing in the living brain. Roger Penrose argued that a
new physics binding quantum phenomena with general relativity can explain such
mental abilities as understanding, awareness, and consciousness (Penrose, 1994).

The second motivation is the possibility that the field of classical neural networks
could be generalized to the promising new field of quantum computation (Brooks,
1999). Both considerations suggest a new understanding of mind and brain
function as well as new unprecedented abilities in information processing. Ezhov
and Ventura (2000) are considering the quantum neural networks as the next
natural step in the evolution of neurocomputing systems.

Naraymen and Meneer (2000) simulated classical and various types of quantum
inspired neural networks and compared their performance. Their work suggests
that there are indeed certain types of problems for which quantum neural networks
will prove superior to classical ones.

Other relevant work includes quantum decision making (Brooks, 1999),
quantum learning models (Kouda et al., 2005), quantum networks for signal
recognition (Tsai et al., 2005) and quantum associative memory (Trugenberger,
2002; Ventura and Martinez, 2000). There are also recent approaches to quantum
competitive learning where the quantum system’s potential for excellent perfor-
mance is demonstrated on real-world datasets (Ventura, 1999; Xie and Zhuang,
2003).

The quantum inspired neural network (QUINN), proposed by Narayanan and
Meneer (2000), interprets each input pattern Sp �p = 1� 2� � � � � k� as a particle, being
learned in a separate ANNp model in a separate universe Up, the superposition
of all NN constituting the whole NN model. The structure of all NN is the same,
so that a connection weight between neuron Ni and neuron Nj in the total model
is a superposition of all connection weights Wij (k) of all k NNs. When an input
pattern S is presented for recognition, the NN model ‘collapses’ into a particular
NN-S that recognises this pattern. Each pattern needs to be presented only once

What Is Next: Quantum Inspired EIS? 399

in order for a NN model to be created for this pattern and become part of the
superposition of all NN models.

QUINNs are in general evolving systems. Presenting a new pattern Sk+1 (a new
particle) to the evolving QUINN model means creating a new NN model that
becomes part of the superposition of connection weights and states.

15.4.2 Neural Network Models Trained with Quantum Inspired
Evolutionary Algorithms

The Han and Kim QEA algorithm from Fig. 15.2 was modified in Venayag-
amoorthy and Singhal (2005) and implemented for a neural network training. The
pseudocode for the modified QEA is given in Fig. 15.3.

In the modified QEA, the local best solutions of the individuals are not stored
in memory. The updates of the parameters � and � are done by comparing the
individual solutions P�t� with the global best solution Best(t − 1). This makes the
modified QEA a greedy algorithm. But this issue is taken care of by introducing
a variable threshold in step (viii) of the algorithm. This parameter allows for the
solution to come out of the local optimum by introducing some ‘noise’.

The parameter theta () has been made adaptive in the modified QEA as opposed
to keeping it fixed throughout the simulation. The value of theta is made smaller
after the error reaches a certain acceptable value. This parameter is similar to the
learning rate used in backpropagation and a few other neural network training

The modified by (Venayagamoorthy et al., 2005) quantum inspired swarm optimisation algorithm by Han and Kim (2002)
applied to train a neural network model (see the text for an explanation of the notations):

begin
t ← 0

i) initialize Q�t�

ii) make P�t� by observing the states of Q�t�

iii) evaluate P�t�

iv) store the best solution among P�t� into Best(t)
while (not termination condition) do
begin
t ← t + 1

v) make P�t� by observing the states of Q�t − 1�
vi) evaluate P�t�

vii) update Q�t� using Q-gates
viii) store the best solution among (Best(t-1) + threshold) and P(t) into Best(t)

ix) update threshold (make it smaller) if best solution among P�t� was stored in Best(t) in the step viii).
x) if (Best(t) error < limit)

update theta
end
end

end

Fig. 15.3 Han and Kim’s QEA algorithm from Fig. 15.2 modified in Venayagamoorthy and Singhal (2005) and
implemented for neural network training.

400 Evolving Connectionist Systems

algorithms. Just as making the learning rate smaller helps to exploit the solution
space better, similarly, reducing theta helps in exploiting the search space.

15.5 Linking Quantum to Neuro-Genetic Information
Processing: Is This The Challenge For the Future?

In the section on computational neuro-genetic modelling (Chapter 9) we presented
a model that links the level of expression of genes and proteins in a neuron to the
neuronal spiking activity, and then to the information processing of a neuronal
ensemble that is measured as local field potentials (LFP).

But how do quantum information processes in the atoms and particles (ions,
electrons, etc.), that make the large protein molecules, relate to the spiking activity
of a neuron and to the activity of a neuronal ensemble? This is a challenging
question that is not possible to answer now, but here we can make some speculative
steps, we hope in the right direction.

The spiking activity of a neuron relates to the transmission of thousands of
ions and neurotransmitter molecules across the synaptic cleft and to the emission
of spikes. Spikes, as carriers of information, are electrical signals made of ions
and electrons that are emitted in one neuron and transmitted along the nerves to
many other neurons. But ions and electrons are characterised by their quantum
properties as discussed in a previous section of this chapter. Therefore, quantum
properties would influence the spiking activity of neurons and the whole brain
and therefore brains obey the laws of quantum mechanics.

Similarly to a chemical effect of a drug to protein and gene expression levels
in the brain that may affect the spiking activity and the functioning of the whole
brain (modelling of these effects is the subject of the computational neuro-genetic
modelling CNGM; see Chapter 9), external quantum factors such as radiation,
high-frequency signals, and the like can influence the quantum properties of
the particles in the brain through gate operators. According to Penrose (1989),
microtubules in the neurons are associated with quantum gates.

Therefore, the challenge is, similar to the CNGM, to create quantum CNGM,
that also take into account quantum properties of the particles in a neuron and in
the brain as a whole.

In the first instance, is it possible at all? At this stage the answer is not known,
but we describe the above relationships in an abstract theoretical way, hoping to
be able to refine this framework, modify it, proof it, and use it in the future, at
least partially.

Figure 15.4 shows hypothetical and abstract links between the different levels
of information processing, following the opening picture in Fig. I.1. Here the
interaction at different levels is shown as hypothetical aggregated functions:

Q′ = Fq �Q � Eq� (15.11)

What Is Next: Quantum Inspired EIS? 401

Quantum information processes:
Q = Fq�Q� Eq�

Molecular/gene information processes in a neuron
M = Fm(Q, M, Em)

Neuronal ensemble (e.g. of spiking neurons)
N = Fn (N,M,Q,En)

Brain cognitive processing
C = Fc (C,N,M,Q,Ec)

Fig. 15.4 Hypothetical and abstract links between the different levels of information processing, following the
opening picture in Fig. I.1. Here the interaction at different levels is shown in terms of hypothetical aggregated
functions.

a future state Q′ of a particle of group of particles (e.g. ions, electrons, etc.) depends
on the current state Q and on the frequency spectrum Eq of an external signal

M ′ = Fm�Q � M� Em� (15.12)

A future state of a molecule M ′ or a group of molecules (e.g. genes, proteins)
depends on its current state M, on the quantum state Q of the particles, and on
an external signal Em.

N ′ = Fn�N� M� Q � En� (15.13)

A future state N ′ of a spiking neuron or an ensemble of neurons will depend on
its current state N , on the state of the molecules M, on the state of the particles Q
and on external signals En.

C′ = Fc�C�N�M�Q �Ec�� (15.14)

a future cognitive state C′ of the brain will depend on its current state C and also
on the neuronal N , on the molecular M, and on the quantum Q states of the brain.

We can support the above hypothetical model of integrated representation, by
stating the following assumptions, some of them already supported by experi-
mental results (Penrose, 1989).

1. A large amount of atoms are characterised by the same quantum properties,
possibly related to the same gene/protein expression profile of a large amount
of neurons characterised by spiking activity.

2. A large neuronal ensemble can be represented by a single LFP.
3. A cognitive process can be represented perhaps as a complex but single function

Fc that depends on all previous levels.

The model above is too simplistic, and at the same time, too complex to implement
at this stage, but even linking two levels of information processing in a computa-
tional model will be useful for the further understanding of complex information
processes and for modelling complex brain functions.

402 Evolving Connectionist Systems

15.6 Summary and Open Questions

We will be aiming in the future at creating quantum inspired models, with the
intention of:

• Using quantum principles to create more powerful information-processing
methods and systems

• Understanding the quantum level information processing in nature as a
promising direction for science in the future

� Understanding molecular and quantum information processing important as
Knowledge for all areas of science.

� Modelling molecular processes, needed for biology, chemistry, and physics.
� Using quantum processes as inspiration for new computer devices – exponential

times faster and more accurate quantum computers are predicted to be produced
in 20 years’ time – not so far away.

New theories (speculative at this stage) have been already formulated, for example:

• Deutsch (see Brooks, 1999) argues that NP-hard problems (e.g. time complexity
grows exponentially with the size of the problem) can be solved by a quantum
computer.

• Penrose (1994) argues that solving the quantum measurement problem is prereq-
uisite for understanding the mind.

• Hameroff (see Brooks, 1999) argues that consciousness emerges as a macroscopic
quantum state due to a coherence of quantum-level events within neurons.

Many open questions need to be answered in this respect. Some of them are listed
below:

• How do quantum processes affect the functioning of a living system in general?
• How do quantum processes affect cognitive and mental functions?
• Is the brain a quantum machine, working in a probabilistic space with many

states (e.g. thoughts) being in a superposition all the time and only when we
formulate our thought through speech or writing does the brain then ‘collapse’
in a single state?

• Is the fast pattern recognition process in the brain, involving far away segments,
a result of both parallel spike transmissions and particle entanglement across
areas of the brain?

• Is communication between people, and living organisms in general, also a result
of entanglement processes? What about “connecting” with ‘ghosts’, or with
extraterrestrial intelligence?

• How does the energy in the atoms relate to the energy of the proteins, the cells,
and the whole living system?

• How does energy relate to information?
• Would it be beneficial to develop different quantum inspired (QI) computational

intelligence techniques, such as QI-SVM, QI-GA, QI-decision trees, QI-logistic
regression, and QI-cellular automata?

What Is Next: Quantum Inspired EIS? 403

• How do we implement the QI computational intelligence algorithms on existing
computer platforms in order to benefit from their high potential speed and
accuracy? Should we wait for the quantum computers to be realised many years
from now, or we can implement them efficiently on specialised computing
devices based on classical principles of physics?

15.7 Further Reading

• Quantum Information Processing (Feynman et al., 1965; Resconi et al., 1999)
• Quantum Computation (Brooks, 1999; Benioff, 1980; Hey, 1999)
• Quantum Processes and the Brain (Penrose, 1989, 1994; Pribram, 1993; Koch

and Hepp, 2006)
• Quantum Neural Networks (Ezhov and Ventura, 2000; Narayanan and Meneer,

2000)
• Quantum Search and Optimisation Algorithms (Grover, 1996; Han and Kim,

2002)
• Feedback Quantum Neuron (Li et al., 2006)

Appendix A. A Sample Program
in MATLAB for
Time-Series Analysis

% Time series analysis
%
xx=fname;
% the time interval for the phase plot
[d1, d2]=size(xx);
%plot raw data time series
fprintf(‘Plotting raw data time series\n’);
tt=(1:d1);
subplot(221)
plot(tt,xx)
xlabel(‘Time t in days’)
ylabel(‘The time series’)
title(‘Time series analysis’)
pause
%%plot 2d phase plot analysis
%fprintf(‘Plotting 2d phase plot analysis\n’);
%dd=d1-4;
%tau=1;
%subplot(222)
%plot(xx(1:dd),xx(1+tau:dd+tau),‘b.’)
%xlabel(‘x(t)’)
%ylabel(‘x(t+1)’)
%title(‘The 2D phase space’)
%pause;
%plot 3d phase plot analysis
fprintf(‘Plotting 3d phase plot analysis\n’);
tau=1;
dd=d1-4;
subplot(222)
plot3(xx(1:dd),xx(1+tau:dd+tau),xx(1+2*tau:dd+2*tau),‘b.’)
grid
xlabel(‘x(t)’)
ylabel(‘x(t+1)’)

405

406 Evolving Connectionist Systems

zlabel(‘x(t+2)’)
title(‘3D phase space’)
pause;
% Histograms
fprintf(‘Plotting probability distribution of the series’);
subplot (223)
hist(xx)
xlabel(‘x values’)
ylabel(‘Repetitive occurance’)
title(‘Histogram’)
pause;
% Power spectrum
yy=psd(xx,512);
subplot(224)
semilogy(yy)
xlabel(‘Frequency’)
ylabel(‘PSD’)
title(‘Power spectrum’)

Appendix B. A Sample MATLAB
Program to Record
Speech and to Transform
It into FFT Coefficients
as Features

The feature vectors extracted in the program are ready to be used to train a
classifier. A trained ECOS classifier can be further adapted on new speech samples
of the same categories (see Fig. B.1 and Table B.1).

% Part A: Recording speech samples
Fs=22050; %sampling frequency
display(‘Press a button and say in 1 sec a word, e.g. Ja, or Yes, or ...’);
pause;
Ja = wavrecord(1*Fs,Fs);

wavplay (Ja,Fs); % listen to the recording
figure (1)
plot(Ja);
save Ja;

display (‘Press a button and say in 1 sec another word, e.g. Nein, or No, or ...’);
pause;
Nein = wavrecord(1*Fs,Fs);

wavplay (Nein,Fs); % listen to the recording
figure (2)
plot(Nein);
save Nein;

pause; %Press a button to continue
% Part B: Feature extraction: The first 20 FFT coefficients are extracted as

% a feature vector that represents a speech sample.
y = fft(Ja); % Compute DFT of x
m = abs(y); % Magnitude
% Plot the magnitude

figure (3); plot(m); title(‘Magnitude Ja’);
FJa=m(1:20);
save FJa;
pause;

407

408 Evolving Connectionist Systems

Appendix B. Sample MATLAB Program to Record and Transform Speech 409

Table B.1 Two exemplar feature vectors of 20 FFT coefficients each obtained
from a run of the program in Appendix B .

A Feature Vector of ‘Ja’ –
the First 20 FFT Coefficients

A Feature Vector of ‘Nein’ –
the First 20 FFT Coefficients

FFT1 0.0463 0.1806
FFT2 0.1269 0.2580
FFT3 0.1477 0.2839
� � �� � � 0.2374 0.2693

0.2201 0.3294
0.3701 0.0596
0.3343 0.1675
0.3993 0.1247
0.2334 0.3774
0.4385 0.1717
0.6971 0.5194
1.2087 0.2292
1.1161 0.4361
0.9162 0.4029
0.7397 0.1440
0.4951 0.1322
0.5241 0.4435
0.2495 0.4441
0.5335 0.1277

FFT20 1.0511 0.2506

y = fft(Nein); % Compute DFT of x
m = abs(y); % Magnitute
% Plot the magnitude
figure (4); plot(m); title(‘Magnitude Nein’);
FNein=m(1:20);
save FNein;
% The next parts are to be implemented as an individual work:

% ..
% Part C Train an ECOS classifier (e.g. EFuNN, ECF, etc)
% Part D Recall the model on new (unlabelled) data
% Part E Adapt the model on new (labelled) data through additional training

Fig. B.1 Screen shots of printed results of a sample run of the program: (a) the waveform of a pronounced
word ‘Ja’ within 1 sec (sampling frequency of 22,050 Hz) in a noisy environment; (b) the wave form of
a pronounced word ‘Nein’ within 1 sec (sampling frequency of 22,050 Hz) in a noisy environment; (c)the
magnitude of the FFT for the pronounced word ‘Ja’; (d) magnitude of the FFT for the pronounced word ‘Nein’.

Appendix C. A Sample MATLAB
Program for Image
Analysis and Feature
Extraction

% Image Filtering and Analysis Exercise

See Figs. C.1a–f.

clc
%Read Lena.tif image
I=imread(‘lena.tif’);
%Display the image
figure; imshow(I); title(‘Original Image’);
pause;
%IMAGE FILTERING AND CONVOLUTION
%Define filter
kernel=[+1 +1 +1; +1 -7 +1; +1 +1 +1];
%Convolve image with kernel
convolved=filter2(kernel,I);
%Display filtered image
figure; imshow(mat2gray(convolved)); title(‘Filtered Image’);
pause;
%Change the kernel to blur the image using a Gaussian kernel
kernel=fspecial(‘gaussian’,5,4);
%Convolve the image
convolved=filter2(kernel,I);
%Display the image
figure; imshow(mat2gray(convolved)); title(‘Blurred Image’);
pause;
% IMAGE AND NOISE
noisyimage = imnoise(I,‘salt & pepper’);title(‘Image with Noise’)
figure; imshow(noisyimage);
pause;
% IMAGE STATISTICAL ANALYSIS
% surface plot
m=mat2gray(double(I));

411

412 Evolving Connectionist Systems

Original Image Filtered Image(a) (b)

(c) Blurred Image (d)

(e)

Fig. C.1 Image analysis of Lena image performed in the sample MATLAB program: (a) original image; (b)
convoluted image; (c) blurred image; (d) added noise; (e) 3D image of Lena, where the third dimension is a
bar graph of the intensity of each pixel; (Continued overleaf)

Appendix C. Sample MATLAB Program for Image Analysis and Feature Extraction 413

(f)

Fig. C.1 (continued) (f) histogram of the intensity of the Lena image.

figure; mesh(m), rotate3d on; colormap(gray); title (‘Surface plot’);
pause
% obtain histogram of the image
figure; hist(double(I),256); colormap(gray);title(‘Image Histogram’)
pause;
Image Feature Extraction MATLAB Program: Composite Profile Feature Vector Extraction

clc
%Read Lena.tif image
I=imread(‘lena.tif’);
%Display the image
figure; imshow(I); title(‘Original Image’);
pause;

%Image Feature Extraction - Composite Profile Vector
of 16+16=32 elements

NFro=16; %number of composite row features
NFcol=16; %number of composite column features
[Nro,Ncol]=size(I);
%calculating the average intensity of each row and forming CompRo vector
CompRo(1:Nro)=0;
for i=1:Nro

CompRo(i)= mean(I(i,:));
end;

414 Evolving Connectionist Systems

%calculating the average intensity of each column and forming CompCol vector
CompCol(1:Ncol)=0;
for j=1:Ncol

CompCol(j)= mean(I(:,j));
end;
% aggregating the ComRo vector of Nro elements into CompFRo vector of
% NFro elements
CompRoStep=floor(Nro/NFro);
CompFRo(1:NFro)=0;
i=1;
k=1;
while i <= NFro

l=k + CompRoStep -1;
for j= k :l

CompFRo(i)= CompFRo(i) + CompRo(j);
end;
CompFRo (i) = CompFRo(i)/CompRoStep;

k=k + CompRoStep;
i=i+1;

end; %while
% aggregating the CompCol vector of NCol elements into CompFCol vector of
% NFcol elements
CompColStep=floor(Ncol/NFcol);
d=NFcol;
CompFCol(1:d)=0;
i=1;
k=1;
while i <= d

l=k + CompColStep -1;
for j= k :l
CompFCol(i)= CompFCol(i) + CompCol(j);

end;
CompFCol (i) = CompFCol(i)/CompColStep;

k=k + CompColStep;
i=i+1;

end; %while
% Composite profile feature vector
CompFVec= [CompFRo CompFCol]
save CompFVec;

Appendix D. Macroeconomic Data
Used in Section 14.2
(Chapter 14)

EU
Member
Countr.

CPI Int.
Rates

Une-
mpl.

GDP
Cap.

EU
Candid.
Countr.

CPI Int.
Rates

Une-
mpl.

GDP
Cap.

Asia-
Pacific
and
USA

CPI Int.
Rates

Une-
mpl.

GDP
Cap.

BE94 2�4 6�6 10�0 23501�88 BG94 96�0 102�5 12�8 1070�584 AU94 1�9 5�4 5�6 18864.80
DK94 2�1 5�6 8�2 29203�53 CZ94 10�0 15�0 3�2 3977�484 CA94 0�2 5�8 10�4 19339.92
DE94 2�7 5�6 8�4 25703�15 EE94 47�6 20�0 7�6 1551�433 JP94 0�7 4�5 2�9 37523.78
EL94 10�7 7�7 8�9 9493�891 HU94 18�8 27�3 11�4 4088�381 US94 2�6 7�1 6�1 27064.55
ES94 4�7 8�3 24�1 13069�69 LV94 35�8 35�3 20�0 1387�861 AU95 4�6 7�5 8�5 20011.71
FR94 1�8 6�2 12�3 23603�64 LT94 72�1 100�0 17�3 1128�341 CA95 2�1 7�3 9�4 20022.78
IR94 2�3 7�7 14�3 15249�09 PL94 32�2 42�2 16�0 2552�231 JP95 −0�1 3�4 3�2 41016.32
IT94 4�1 7�7 11�4 18223�49 RO94 137�0 93�1 10�9 1321�433 US95 2�8 8�8 5�6 28159.58
NL94 2�8 5�6 7�1 22839�21 SK94 13�3 17�6 14�8 2575�209 AU96 2�6 7�1 8�6 22125.82
AS94 2�9 5�6 3�8 24893�14 SI94 21�0 37�7 14�2 7228�965 CA96 1�6 4�5 9�6 20393.80
PT94 5�4 7�7 7�0 9406�548 TR94 106�3 104�0 8�1 2136�126 JP96 0�1 3�1 3�4 36635.78
FI94 1�1 5�6 16�6 19814�19 BG95 62�1 79�8 11�1 1450�371 US96 2�9 8�3 5�4 29447.22
SW94 2�4 4�0 9�4 23522�05 CZ95 9�2 14�3 2�9 5042�864 AU97 0�3 5�4 8�6 21893.79
UK94 2�4 6�6 9�6 17748�93 EE95 29�0 15�9 9�7 2323�289 CA97 1�6 3�5 9�1 20823.87
BE95 1�4 7�1 9�9 27688�33 HU95 28�4 32�5 11�3 4371�519 JP97 1�7 2�6 3�4 33470.18
DK95 2�0 8�1 7�2 34468�86 LV95 25�0 28�3 18�9 1760�944 US97 2�3 8�4 4�9 30978.79
DE95 1�7 6�6 8�2 30118�61 LT95 39�7 91�8 17�5 1603�128 AU98 0�8 5�0 8�0 19296.98
EL95 8�9 12�0 9�2 11268�59 PL95 27�9 36�7 15�2 3268�609 CA98 1�0 5�1 8�3 19913.63
ES95 4�7 11�0 22�9 15116�65 RO95 32�3 45�1 9�5 1562�484 JP98 0�7 2�4 4�1 30177.30
FR95 1�7 7�3 11�7 27027�11 SK95 9�9 18�3 13�1 3249�357 US98 1�6 8�4 4�5 32371.24
IR95 2�6 11�7 12�3 18313�38 SI95 13�5 20�7 14�5 9418�932 AU99 1�5 4�8 7�2 20695.62
IT95 5�3 11�7 11�9 19465�62 TR95 93�2 91�5 6�9 2793�032 CA99 1�8 4�9 7�6 20874.28
NL95 1�9 6�6 6�9 26818�29 BG96 121�6 300�3 12�5 1094�422 JP99 −0�3 2�3 4�7 34402.24
AS95 2�2 6�7 3�9 29274�04 CZ96 8�8 13�9 3�5 5618�062 US99 2�1 8�0 4�2 33933.58
PT95 4�2 11�7 7�3 11150�55 EE96 23�0 13�8 10�0 2835�259 CH94 24�1 15 2�8 453.8093
FI95 0�8 6�6 15�4 25519�55 HU96 23�5 27�8 10�7 4437�277 HK94 8�8 7�3 1�9 21844.09
SW95 2�9 9�9 8�8 27153�07 LV96 17�6 19�1 18�3 1981�451 KR94 6�2 12�5 2�4 9035.619
UK95 3�4 8�2 8�7 19207�55 LT96 24�6 62�3 16�4 2099�703 NZ94 2�8 8�4 8�1 14562.10
BE96 2�1 6�6 9�7 26878�00 PL96 19�9 25�0 13�1 3696�670 SN94 3�1 6�5 2�6 23783.86
DK96 2�1 7�2 6�8 34816�05 RO96 38�8 43�5 6�6 1560�051 CH95 17�1 12 2�9 579.6171
DE96 1�4 6�2 8�9 29112�06 SK96 5�8 16�2 12�8 3505�221 HK95 4�5 8 3�2 22765.22
EL96 8�2 10�9 9�6 11897�31 SI96 9�9 21�5 14�5 9486�336 KR95 4�5 12�5 2 10872.87

(Continued)

415

416 Evolving Connectionist Systems

EU
Member
Countr.

CPI Int.
Rates

Une-
mpl.

GDP
Cap.

EU
Candid.
Countr.

CPI Int.
Rates

Une-
mpl.

GDP
Cap.

Asia-
Pacific
and
USA

CPI Int.
Rates

Une-
mpl.

GDP
Cap.

ES96 3�6 9�0 22�2 15708�41 TR96 79�4 92�8 6�1 2801�376 NZ95 2�9 10�1 6�3 16818.37
FR96 2�0 6�4 12�4 26941�92 BG97 1061�5 209�8 14�0 1136�308 SN95 1�7 6 2�7 27523.79
IR96 1�7 9�9 11�6 19973�93 CZ97 8�5 13�9 5�2 5165�963 CH96 8�3 10�1 3 671.2046
IT96 4�0 9�9 12�0 21842�17 EE97 11�2 18�4 9�7 3036�381 HK96 6�3 8 2�8 24716.34
NL96 2�0 6�2 6�3 26506�04 HU97 18�3 22�4 10�9 4510�119 KR96 4�9 11�1 2 11446.39
AS96 1�5 6�2 4�3 28758�02 LV97 8�4 15�1 14�4 2228�753 NZ96 2�6 10�3 6�1 18166.88
PT96 3�1 8�1 7�3 11580�36 LT97 8�9 27�1 14�1 2550�053 SN96 1�4 5�5 3 28963.74
FI96 0�6 6�2 14�6 25125�13 PL97 14�8 25�0 10�5 3698�310 CH97 2�8 8�6 3 730.2216
SW96 0�8 8�2 9�6 29575�41 RO97 160�9 56�0 8�9 1556�907 HK97 5�8 8 2�2 26623.61
UK96 2�4 7�8 8�2 20060�55 SK97 6�0 15�9 12�5 3623�796 KR97 4�5 15�3 2�6 10381.88
BE97 1�6 5�8 9�4 24336�20 SI97 8�4 19�1 14�9 9548�725 NZ97 0�8 9�4 6�6 17775.99
DK97 2�3 6�3 5�6 31961�49 TR97 85�3 93�4 6�4 2975�614 SN97 2 5�5 2�4 28970.36
DE97 1�9 5�6 9�9 25780�23 BG98 18�7 14�1 12�2 1377�469 CH98 −0�7 7�1 3�1 772.4022
EL97 5�5 9�9 9�8 11514�43 CZ98 10�7 13�5 7�5 5488�726 HK98 2�8 9�9 4�7 24893.97
ES97 1�9 6�4 20�8 14393�66 EE98 10�5 16�5 9�9 3391�875 KR98 7�5 11�1 6�8 6840.121
FR97 1�2 5�6 12�3 24325�34 HU98 14�1 19�7 9�9 4659�209 NZ98 0�4 8�9 7�5 14427.66
IR97 1�5 7�1 9�8 21535�54 LV98 4�7 13�1 13�8 2513�289 SN98 −0�3 5�9 3�2 24496.42
IT97 2�0 7�1 12�1 20586�60 LT98 5�1 21�6 13�3 2863�991 CH99 0 5 3 791.3046
NL97 2�2 5�6 5�2 24130�14 PL98 11�6 24�5 10�9 4059�731 HK99 −4 8�5 6 23639.57
AS97 1�3 5�6 4�4 25615�78 RO98 59�1 38�8 10�4 1839�840 KR99 0�8 8�5 6�3 8711.929
PT97 2�3 7�1 6�8 11041�68 SK98 6�7 16�5 15�6 3786�201 NZ99 0�5 7�1 6�8 14596.51
FI97 1�2 5�6 12�7 24022�38 SI98 7�9 16�0 14�5 10024�23 SN99 0 5�8 3�3 24807.76
SW97 0�9 6�7 9�9 26786�31 TR98 83�7 93�9 6�4 3087�431
UK97 3�2 7�2 7�0 22641�23 BG99 2�6 13�6 13�7 1422�346
BE98 1�0 4�8 9�5 24981�72 CZ99 2�1 9�0 9�4 5180�776
DK98 1�8 5�0 5�1 32903�07 EE99 3�3 8�6 12�0 3503�575
DE98 1�0 4�6 9�4 26232�61 HU99 10�0 16�7 9�6 5070�581
EL98 4�7 8�5 10�7 11535�17 LV99 2�3 13�6 9�1 2622�108
ES98 1�8 4�9 18�7 14995�52 LT99 0�8 14�4 10�0 2817�907
FR98 0�8 4�7 11�7 24958�29 PL99 7�3 17�5 13�3 3977�692
IR98 2�4 5�0 7�8 23025�41 RO99 43�2 35�0 11�5 1507�497
IT98 2�0 5�0 12�2 21050�44 SK99 10�5 14�9 19�2 3555�579
NL98 2�0 4�6 4�0 24925�68 SI99 6�2 12�0 13�1 10802�41
AS98 1�0 4�8 4�7 26109�71 TR99 63�6 79�3 7�3 2889�758
PT98 2�7 5�0 5�1 11669�40
FI98 1�5 4�6 11�4 25167�72
SW98 0�4 5�2 8�3 26818�57
UK98 3�4 5�7 6�3 24097�07
BE99 1�1 4�7 9�0 24760�10
DK99 2�4 5�0 5�2 32727�21
DE99 0�6 4�5 8�7 25782�08
EL99 2�7 6�4 10�4 11873�06
ES99 2�3 4�4 15�9 15368�53
FR99 0�6 4�9 11�3 24593�61
IR99 1�6 4�8 5�7 24529�16
IT99 1�7 4�0 11�4 20734�37
NL99 2�2 4�6 3�3 24987�81
AS99 0�6 4�3 3�7 25793�41
PT99 2�3 4�8 4�5 11823�92
FI99 1�2 4�7 10�2 25194�63
SW99 0�3 5�0 7�2 26869�68
UK99 1�6 5�1 6�2 24632�55

References

Abbass, H.A. (2004) Evolving neural network ensembles by minimization of mutual information, Int. J. Hybrid
Syst. 1(1).

Abdulla, W. and Kasabov, N. (2003) Reduced feature-set based parallel CHMM speech recognition systems,
Inf. Sci. 156: 23–38.

Abe, S. and Lan, M.S. (1995) A method for fuzzy rules extraction directly from numerical data and its
application to pattern classification. IEEE Trans.Fuzzy Syst. 3: 18–28.

Abraham, W.C. et al. (1993) Correlating between immediate early gene induction and the persistence of
long-term potentiation, Neuroscience 56(3): 717–727.

Adami, C. (1998) Introduction to Artificial Life, Springer Verlag, New York.
Aertsen, A. and Johannesma, P. (1980) Spectro-temporal receptive fields of auditory neurons in grass frog. I.

Categorization of tonal and natural stimuli, Biol.Cybern. 38: 223–234.
Aha, D.W, Kibler, D., and Albert, M.K. (1991) Instance-based learning algorithms, Mach. Learn.6: 37–66.
Ajjanagadde, V. and Shastri, L. (1991) Rules and variables in neural networks. Neural Comput. 3(1): 121–134.
Albus, J.S. (1975) A new approach to manipulator control: The cerebellar model articulation controller

(CMAC), Trans. ASME, Dynamic Syst. Meas. Contr. 97(3): 220–227.
Aleksander, I. (Ed.) (1989) Neural Computing Architectures. The Design of Brain-Like Machines. MIT Press,

Cambridge, MA.
Aleksander, I. and Morton, H. (1990) An Introduction to Neural Computing, Chapman & Hall, London.
Allen, J.B. (1995) Speech and Hearing in Communication, Acoustic Society of America, ASA ed., New York.
Allen, J.N., Abdel-Aty-Zohdy, H.S., Ewing, R.L., and Chang, T.S. (2002) Spiking networks for biochemical

detection, circuits and systems, MWSCAS-2002. The 2002 45th Midwest Symposium vol. 3, 4–7 Aug.
pp. III-129 - III-132 vol.3.

Almeida, L., Langlois, T., and Amaral, J. (1997) Online step size adaptation, Technical Report, INESC RT07/97.
Alon, A. et al. (1999) Patterns of gene expression revealed by clustering analysis of tumor and normal colon

tissues probed by oligonucleotide arrays, Proc. Natl. Acad. Sci.USA 96: 6745–6750.
Altman, G. (1990) Cognitive Models of Speech Processing, MIT Press, Cambridge, MA.
Amari, S. (1967) A theory of adaptive pattern classifiers. IEEE Trans. Electron. Comput. 16: 299–307.
Amari, S. (1990) Mathematical foundations of neurocomputing.Proc. IEEEE 78: 1143–1163.
Amari, S. and Kasabov, N. (Eds.) (1998) Brain-like Computing and Intelligent Information Systems, Springer

Verlag, Singapore.
Amari, S., Cichocki, A., and Yang, H. (2000) Blind signal separation and extraction: Neural and information-

theoretic approach. In: S. Haykin (Ed.) Unsupervised Adaptive Filtering, vol.1, John Wiley & Sons,
New York, pp. 63–138.

Amit, D. (1989) Modeling Brain Function: The World of Attractor Neural Networks, Cambridge University
Press, Cambridge, UK.

Anand, R., Mehrotra, K., Mohan, C.K., and Ranka, S. (1995) Efficient classification for multiclass problems
using modular neural networks. IEEE Trans. Neural Netw. 6: 117–124.

Anderson, J. (1995) An Introduction to Neural Networks, MIT Press, Cambridge, MA.
Anderson, J.A. (1983) Cognitive and psychological computations with neural models, IEEE Trans. Syst. Man

Cybern. SMC–13: 799–815.
Anderson, J.R. (1983) The Architecture of Cognition, Harvard University Press, Cambridge, MA.
Anderson, K.M., Odell, P.M., Wilson, P.W.F., and Kannel, W.B. (1991) Cardiovascular disease risk profiles,

Am. Heart J. 121(1 Part 2): 293–298.
Andrews, R., Diederich, J., and Tickle, A.B. (1995) A survey and critique of techniques for extracting rules

from trained artificial neural networks. Knowl. Based Syst. 8: 373–389.
Angelov, P. (2002) Evolving Rule-based Models: A Tool for Design of Flexible Adaptive Systems. Springer-Verlag,

Heidelberg.

417

418 Evolving Connectionist Systems

Angelov, P. and Filev, D. (2004) An approach to online identification of evolving Takagi-Sugeno models, IEEE
Trans. Syst. Man Cybern. B 34(1): 484–498.

Angelov, P. and Kasabov, N. (2005) Evolving computational intelligence systems, In: R. Alcala et al. (Eds.)
Proceedings of the I Workshop on Genetic Fuzzy Systems, Granada, March 17–19, pp.76–82.

Angelov, P., Victor, J., Dourado, A., and Filev, D. (2004) Online evolution of Takagi-Sugeno fuzzy models.
In: Proceedings of the 2nd IFAC Workshop on Advanced Fuzzy/Neural Control, 16–17 September 2004,
Oulu, Finland, pp. 67–72.

Anthony, M. and Biggs, N. (1992) Computational Learning Theory: An Introduction, Cambridge University
Press, Cambridge, UK.

Arbib, M. (1972) The Metaphorical Brain – An Introduction to Cybernetics as Artificial Intelligence and Brain
Theory. Wiley Interscience, New York.

Arbib, M. (1987) Brains, Machines and Mathematics. Springer Verlag, Berlin.
Arbib M, (1995, 2002) The Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge, MA.
Arbib, M. (1998) From vision to action via distributed computation. In: Amari and Kasabov (Eds.) Brain-Like

Computing and Intelligent Information Systems, Springer, Singapore and Heidelberg.
Arhns, I., Bruske, J., and Sommer, G. (1995) Online learning with dynamic cell structures. In: Proceedings

of the International Conference on Artificial Neural Networks, pp. 141–146
Attwood, T. and Parry-Smith, D. (1999) Introduction to Bioinformatics. Cell and Molecular Biology in Action.

Addison-Wesley Longman, Reading, MA.
Bacic, B. (2004) Towards a neuro fuzzy tennis coach: Automated extraction of the region of interest (ROI).

In: Proceedings of the IEEE International Joint Conference on Neural Networks, Budapest, July 26–29,
IEEE Press, Washington, DC.

Bajic, V.B. and Wee, T.T. (Eds.) (2005) Information Processing and Living Systems, Series on Advances
in Bioinformatics and Computational Biology, Y. Xu and L. Wong (Series Eds.), Imperial College Press,
Singapore.

Baker, P. and Brass, A. (1998) Recent developments in biological sequence databases. Curr. Opinion Biotechnol.
9: 54–58.

Baker, R.H.A. (2002) Predicting the limits to the potential distribution of alien crop pests. In: G. Halman and
C.P. Schwalbe (Eds.), Invasive Arthropods and Agriculture: Problems and Solutions, Science, Enfield,
NH, Chapter 11, pp. 208–241.

Baldi, P. and Brunaks, S. (1998, 2001) Bioinformatics – A Machine Learning Approach, MIT Press, Cambridge,
MA.

Baldi, P. and Hatfield, G.W. (2002) DNA Microarrays and Gene Expression, Cambridge University Press,
Cambridge, UK.

Barlett, P. (1993) The sample size necessary for learning in multi-layer networks. In: Proceedings of Australian
Conference on Neural Networks, pp.14–17.

Barnden, J. and Shrinivas, K. (1991) Encoding techniques for complex information structures in connectionist
systems. Connection Sci. 3(3): 269–315.

Barndorff-Nielsen, O., Jensen, J., and Kendall, W. (Eds.) (1993) Networks and Chaos - Statistical and Proba-
bilistic Aspects, Chapman and Hall, London.

Bates, E. and Goodman, J. (1999) On the emergence of grammar from the lexicon. In: B. MacWhinney (Ed.),
The Emergence of Language. Lawrence Erlbaum, Mahwah, NJ, pp. 29–79.

Baxevanis, A. (2000) The molecular biology database collection: An online compilation of relevant database
resources. Nucleic Acids Res. 28: 1–7.

Benioff, P. (1980) The computer as a physical system: A microscopic quantum mechanical Hamiltonian model
of computers as represented by Turing machines, J. Statist. Phys. 22, 563.

Benson, D., Mizrachi-Karsch, I., Lipman, D., Ostell, J., Rapp, B., and Wheeler, D. (2000) Genbank. Nucleic
Acids Res. 28(1): 15–18.

Benuskova, L. and Kasabov, N. (2007) Computational Neurogenetic Modelling, Springer, New York.
Benuskova, L., Jain, V., Wysoski, S.G., and Kasabov, N. (2006) Computational neurogenetic modeling:

a pathway to new discoveries in genetic neuroscience, Int. J. Neural Syst. 16(3): 215–227.
Benuskova, L., Wysoski, S., and Kasabov, N. (2006) Computational neuro-genetic modelling: A methodology

to study gene interactions underlying neural oscillations. In: Proceedings of IJCNN 2006, IEEE Press,
Washington, DC.

Berenji, H.R. (1992) Fuzzy logic controllers. In: R.R. Yager and L.A. Zadeh (Eds.) An Introduction to Fuzzy
Logic Applications in Intelligent Systems. Kluwer Academic, Higham, MA.

Bezdek, J. (1981) Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press. New York.
Bezdek, J. (Ed.) (1987) Analysis of Fuzzy Information, vols. 1–3, CRC Press, Boca Raton, FL.

References 419

Bezdek J. (1993) A review of probabilistic, fuzzy, and neural models for pattern recognition. J. Intell. Fuzzy
Syst. 1: 1–25.

Bezdek, J., Hall, L.O., and Clarke, L.P. (1993) Review of MR image segmentation techniques using pattern
recognition. Med. Phys. 20:1033–1048.

Biehl, M., Freking, A., Holzer, M., Reents, G., and Schlosser, E. (1998) Online learning of prototypes and
principal components. In: D. Saad (Ed.), online Learning in Neural Networks, Cambridge University
Press, Cambridge, UK, pp 231–249.

Bienenstock, E.L., Cooper, L.N., and Munro, P.W. (1982) Theory for the development of neuron selectivity:
Orientation specificity and binocular interaction in visual cortex. J. Neurosci. 2: 32–48.

Bishop, C. (2000) Neural Networks for Pattern Recognition, Oxford University Press, New York.
Bishop, C.M., Svensen, M., and Williams, C.K.I. (1998) GTM: The generative topographic mapping. Neural

Comput. 10(1): 215–234.
Blake, C. and Merz, C. (1998) Repository of machine learning databases. http://www.ics.uci.edu/∼mlearn/

MLRepository.html: University of California, Irvine, CA. Department of Information and Computer
Science.

Blanzieri, E. and Katenkamp, P. (1996) Learning radial basis function networks online. In: Proceedings of the
International Conference on Machine Learning, Bari, Italy, Morgan Kaufmann, San Francisco, pp. 37–45.

Boguski, M. (1998) Bioinformatics – A New Era. Trends Guide to Bioinformatics, pp. 1–3.
Bohte, S.M., La Poutre, H.A., and Kok, J.N. (2000) Spikeprop: Error backpropagation of network of spiking

neurons. In: Proceedings of ESANN’ 2000, pp. 419–425.
Bottu, J. and Vapnik, V. (1992) Local learning computation. Neural Comput. 4: 888–900.
Boubacar, H.A., Lecoeuche, S., and Maouche, S., (2005) Self-adaptive kernel machine: Online clustering in

RKHS. In: Proceedings of IEEE International Joint Conference on Neural Networks, Montreal, July 31–
August 4, IEEE Press, Washington, DC, pp. 1977–1982.

Bower, J.M. and Bolouri, H. (Eds.) (2001) Computational Modelling of Genetic and Biochemical Networks,
MIT Press, Cambridge, MA.

Box, G. and Jenkins, G. (1970) Time-Series Analysis: Forecasting and Control, Holden-Day, San Francisco.
Box, G. and Tiao, G.C. (1973) Bayesian Inference in Statistical Analysis, Addison-Wesley, Reading, MA.
Bramer, M., Coenen, F., and Allen, T. (Eds.) (2005) Research and development in intelligent systems XII. In:

Proceedings of AI-2005, the Twenty-fifth SGAI International Conference on Innovative Techniques and
Applications of Artificial Intelligence, Springer, New York.

Brooks, M. (Ed.) (1999) Quantum Computing and Communications, Springer, New York.
Brown, C., Jacobs, G., Schreiber, M., Magnum, J., McNaughton, J., Cambray, M., Futschik, M., Major, L.,

Rackham, O., Tate, W., Stockwell, P., Thompson, C., and Kasabov, N. (2000a) Using bioinformatics to
investigate post-trascriptional control of gene expression, NZ Bio Science, 7(4): 11–12.

Brown, C., Shreiber, M., Chapman, B., and Jacobs, G. (2000b) Information science and bioinformatics, In:
N. Kasabov (Ed.) Future Directions of Intelligent Systems and Information Sciences, Physica Verlag
(Springer Verlag), pp. 251–287.

Brown R.G. (1963) Smoothing, Forecasting and Prediction of Discrete Time Series, Prentice-Hall International,
Upper Saddle River, NJ.

Brunelli, R. and Falavigna, D. (1995) Person identification using multiple cues, IEEE Trans.Pattern Anal.Mach.
Intell. 17: 955–966.

Bruske J. and Sommer, G. (1995) Dynamic cell structure learns perfectly topology preserving map. Neural
Comput. 7: 845–865.

Bruske, J., Ahrns, L., and Sommer, G. (1998) An integrated architecture for learning of reactive behaviours
based on dynamic cell structures. Robot. Auton. Syst. 22: 81–102.

Buckley, J.J. and Hayashi, Y. (1993) Are regular fuzzy neural nets universal approximators? In: Proceedings of
the International Journal Conference on Neural Networks (IJCNN), pp. 721–724.

Bukhardt, D. and Bonissone, P. (1992) Automated fuzzy knowledge base generation and tuning. In: Proceedings
of the First IEEE Fuzzy Systems Conference, pp.179–188.

Bulsara, A. (1993) Bistability, noise, and information processing in sensory neurons. In: N. Kasabov (Ed.)
Artificial Neural Networks and Expert Systems, IEEE Computer Society Press, Los Alamitos, CA,
pp. 11–14.

Bunke, H. and Kandel, A. (2000) Neuro-Fuzzy Pattern Recognition, World Scientific, Singapore.
Bunke, H. and Kandel, A. (Eds.) (2000) Neuro-Fuzzy Pattern Recognition, Series in Machine Perception

Artificial Intelligence, Vol. 41, World Scientific, Singapore.
Carpenter, G. and Grossberg, S. (1991) Pattern Recognition by Self-Organizing Neural Networks. MIT Press,

Cambridge, MA.

420 Evolving Connectionist Systems

Carpenter, G.A. and Grossberg, S. (1987) ART 2: Self-organization of stable category recognition codes for
analogue input patterns, Appl. Optics 26(23): 4919–4930, 1.

Carpenter, G.A. and Grossberg, S. (1990) ART3: Hierarchical search using chemical transmitters in self-
organising pattern-recognition architectures. Neural Netw. 3(2): 129–152.

Carpenter, G.A., Grossberg, S., Markuzon, N., Reynolds, J.H., and Rosen, D.B. (1991) FuzzyARTMAP: A neural
network architecture for incremental supervised learning of analogue multidimensional maps. IEEE
Trans. Neural Netw.3(5): 698–713.

Chakraborty, S., Pal, K., and Pal, N.R. (2002) A neuro-fuzzy framework for inferencing. Neural Netw. 15:
247–261.

Chan S. and Kasabov, N. (2004) Efficient global clustering using the greedy elimination method, Electron.
Lett. 40(25).

Chan, S.H. and Kasabov, N. (2005) Fast neural network ensemble learning via negative-correlation data
correction, IEEE Trans. Neural Netw.16(6): 1707–1710.

Chan, S.H., Collins, L., and Kasabov, N. (2005) Bayesian inference of sparse gene network, In: Proceedings of
the Sixth International Workshop on Information Processing in Cells and Tissues, St William’s College,
York, UK, August 30–September 1, 2005, pp. 333–347.

Chan, S.Z., Kasabov, N., and Collins, L. (2005) A hybrid genetic algorithm and expectation maximization
method for global gene trajectory clustering, J. Bioinf. Comput. Biol. 3(5): 1227–1242.

Chan, Z. and Kasabov, N. (2004) Evolutionary computation for online and off-line parameter tuning of
evolving fuzzy neural networks, Int. J. Comput. Intell. Appl. 4(3, Sept.): 309–319.

Chan, Z. and Kasabov, N. (2005) A preliminary study on negative correlation learning via correlation-corrected
data (NCCD), Neural Process. Lett. 21(3): 207–214.

Chan, Z., Collins, L., and Kasabov, N. (2006a) An efficient greedy K-means algorithm for global gene
trajectory clustering, Expert Sys. Appl..Int. J. Special issue on intelligent bioinformatics systems,
pp. 137–141.

Chan, Z., Kasabov, N., and Collins, L. (2006b) A two-stage methodology for gene regulatory network extraction
from time-course gene expression data, Expert Syst. App. Int. J., Special issue on intelligent bioinformatics
systems, pp. 59–63.

Chan, Z.S. and Kasabov, N. (2004) Gene trajectory clustering with a hybrid genetic algorithm and expectation
maximization method. In: Proceedings of the International Joint Conference on Neural Networks, IJCNN
2004, Budapest, 16–30 June, IEEE Press, Washington, DC.

Chaudhuri, D., Murthy, C., and Chaudhuri, B. (1992) A modified metric to compute distance, Patt. Recogn.
7: 6687–677.

Chauvin, L. (1989) A backpropagation algorithm with optimal use of hidden units. Adv. Neuro Inf. Process.
Syst. 1: 519–526.

Chen, Y.Q., Thomas, D.W., and Nixon, M.S. (1994) Generating-shrinking algorithm for learning arbitrary
classification. Neural Netw. 7: 1477–1489.

Chen, W. and Smith, C. (1977) Adaptive coding of monochrome and colour images, IEEE Trans. Commun.
COM-25(11): 1285–1292.

Cherkassky, V. and Mulier, F. (1998) Learning from Data, Series in Adaptive and Learning Systems for Signal
Processing, Communications and Control, Haykin, S. (Series Ed.), Wiley Interscience, New York.

Chiu, S.L. (1994) Fuzzy model identification based on cluster estimation, J. Intell. Fuzzy Syst. 2: 267–278,
Cho, R.J., Campbell, M.J., Winzeler, E.A., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, T.G., Gabrielian,

A.E., Landsman, D., Lockhart, D.J., and Davis, R.W. (1998) A genome-wide transcriptional analysis of
the mitotic cell cycle, Molec. Cell 2: 65–73.

Choi, B. and Bluff, K. (1995) Genetic optimisation of control parameters of neural networks. In: Proceedings of
the International Conference on Artificial Neural Networks and Expert Systems (ANNES 1995�, Dunedin,
New Zealand, IEEE Computer Society Press, Washington, DC, pp. 174–177.

Chomsky, N. (1995) The Minimalist Program. MIT Press, Cambridge, MA.
Churchland, P. and Sejnowski, T. (1992) The Computational Brain. MIT Press, Cambridge, MA.
Clark, A. (1989) Micro-Cognition: Philosophy, Cognitive Science, and Parallel Distributed Processing. MIT

Press, Cambridge, MA.
Cloete, I. and Zurada, J. (Eds.) (2000) Knowledge-Based Neurocomputing, MIT Press, Cambridge, MA.
Cockcroft D.W. and Gault, M.H. (1976) Prediction of creatinine clearance from serum creatinine,Nephron 16:3–41.
Cole, R. et al. (1995) The challenge of spoken language systems: Research directions for the nineties. IEEE

Trans. Speech Audio Process. 3(1): 1–21.
Collado-Vides, J., Magasanik, B., and Smith, T.F. (1996) Integrative Approaches to Molecular Biology, MIT

Press, Cambridge, MA.

References 421

Comon, P. (1994) Independent component analysis, a new concept? Signal Process. 3(36): 287–314.
Connor, C.E. (2005) Friends and grandmothers. Nature 435(June): 23.
Coyle, D. and McGinnity, T.M. (2006), Enhancing autonomy and computational efficiency of the self-

organizing fuzzy neural network for a brain-computer interface. In: Proceedings of the IEEE International
Conference on Fuzzy Systems, Vancouver, July 16–21, IEEE Press, Washington, DC, pp. 10485–10492.

Crick, F. (1970) Central dogma of molecular biology. Nature. 227: 561–563.
Culicover, P. (1999) Syntactic Nuts: Hard Cases, Syntactic Theory, and Language Acquisition. Oxford University

Press, Oxford.
Cybenko, G. (1989) Approximation by superpositions of a sigmoidal function, Math. Control Signals Syst. 2:

303–314.
D’haeseleer, P., Liang, S., and Somogyi, R. (2000) Genetic network inference; From co-expression clustering

to reverse engineering. Bioinformatics 16(8): 707–726.
Dasgupta, D. and Michalewicz, Z. (1997) Evolutionary Algorithms in Engineering Applications, Springer-Verlag,

Berlin.
Darwin, C. (1859) The Origin of Species by Means of Natural Selection. London: John Murray.
de Bollivier, M., Gallinari, P., and Thiria, S. (1990) Cooperation of neural nets for robust classification,

Universite de Paris-Sud, Report 547, Informatiques.
Deacon, T. (1988) Human brain evolution: Evolution of language circuits. In H. Jerison and I. Jerison (Eds.),

NATO ASI Series Intelligence and Evolutionary Biology, Springer Verlag, Berlin.
Deacon, T. (1998) The Symbolic Species. The Co-Evolution of Language and the Human Brain. Penguin,

New York.
Dean, T., Allen, J., and Aloimonos, Y. (1995) Artificial Intelligence, Theory and Practice, Benjamin/Cummings,

Menlo Park, CA.
de-Boer, E. and de Jongh, H.R. (1978) On cochlea encoding : Potentialities and limitations of the reverse-

correlation technique, J. .Acoust. Soc. Am. 63(1): 115–135.
Delorme, A. and Thorpe, S. (2001) Face identification using one spike per neuron: Resistance to image

degradation, Neural Netw. 14: 795–803.
Delorme, A., Gautrais, J., van Rullen, R., and Thorpe, S. (1999) SpikeNet: A simulator for modeling large

networks of integrate and fire neurons, Neurocomputing 26–27:. 989–996.
Delorme, A., Perrinet, L., and Thorpe, S.J. (2001) Networks of integrate-and-fire neurons using Rank Order Coding

B: Spike timing dependent plasticity and emergence of orientation selectivity. Neurocomputing 38–48.
Deng, D. and Kasabov, N. (2000) ESOM: An algorithm to evolve self-organizing maps from online data

streams. In: Proceedings of IJCNN’2000, vol. VI, Como, Italy, pp. 3–8.
Deng, D. and Kasabov, N. (2003) Online pattern analysis by evolving self-organising maps, Neurocomputing

51(April): 87–103.
DeRisi, J.L., Iyer, V.R., and Brown, P.O. (1997) Exploring the metabolic and genetic control of gene expression

on a genomic scale, Science 275: 680–686.
Destexhe, A. (1998) Spike-and-wave oscillations based on the properties of GABAB receptors. J. Neurosci. 18:

9099–9111.
Destexhe, A., Contreras, D., and Steriade, M. (1999) Spatiotemporal analysis of local field potentials and unit

discharges in cat cerebral cortex during natural wake and sleep states. J. Neurosci. 19: 4595–4608
Dimitrov, D.S., Sidorov, I.A., and Kasabov, N.K. (2006) Computational Biology. In: M. Rieth and W. Sommers

(Eds.), Handbook of Theoretical and Computational Nanotechnology, vol. 6, American Scientific,
Singapore, Chapter 1, 2–41.

Dingle, A., Andreae, J., and Jones, R. (1993) The chaotic self-organizing map. In: N. Kasabov (Ed.), Artificial
Neural Networks and Expert Systems, IEEE Computer Society Press, Los Alamitos, CA, pp. 15–18.

Dowling, J. (2006) To compute or not to compute? Nature 439(Feb.): 23.
Doya, K. (1999) What are the computations of the cerebellum, the basal ganglia, and the cerebral cortex.

Neural Netw. 12: 961–974.
Dubois, D. and Prade, H. (1980) Fuzzy Sets and Systems: Theory and Applications, Academic Press, New York.
Dubois D. and Prade, H. (1988) Possibility Theory. An Approach to Computerised Processing of Uncertainty,

Plenum Press, New York and London.
Duch, W., Adamczak, R., and Grabczewski, K. (1998) Extraction of logical rules from neural networks, Neural

Proc. Lett. 7: 211–219.
Duda, R. and Hart, P. (1973) Pattern Classification and Scene Analysis. John Wiley and Sons, New York.
Duell, P., Fermin, I., and Yao X., (2006) Speciation techniques in evolved ensembles with negative correlation

learning. In: Proceedings of the IEEE Congress on Evolutionary Computation, Vancouver, July 16–21,
IEEE Press, Washington, DC, pp. 11086–11090.

422 Evolving Connectionist Systems

Durand G., Kovalchuk, Y., and Konnerth, A. (1996) Long-term potentiation and functional synapse induction
in developing hippocampus. Nature 381(5): 71–75.

Edelman, G. (1992) Neuronal Darwinism: The Theory of Neuronal Group Selection. Basic, New York.
Elman, J. (1990) Finding structure in time, Cogn. Sci. 14: 179–211.
Elman, J., Bates, E., Johnson, M., Karmiloff-Smith, A., Parisi, D., and Plunkett, K. (1997) Rethinking Innateness

(A Connectionist Perspective of Development). MIT Press, Cambridge, MA.
Erdi, P. (2007) Complex explained. Springer, Berlin.
Eriksson, P.S., Perfilieva, E., Bjork-Eriksson, T., Alborn, A.M., Norborg, C., Peterson, D.A., and Gag, F.H.

(1998) Neurogenesis in the adult human hippocampus. Nature Med. 4: 1313–1317.
Eriksson, J.L. and Villa, A.E.P. (2006) Artificial neural networks simulation of learning of auditory equivalence

classes for vowels. In: Proceedings of IEEE International Joint Conference on Neural Networks, Vancouver,
July 16–21, IEEE Press, Washington, DC, pp. 1253–1260.

Ezhov, A. and Ventura, D. (2000) Quantum neural networks. In: N. Kasabov (Ed.), Future Directions for
Intelligent Systems and Information Sciences, Springer Verlag, New York.

Fahlman, C. and Lebiere, C. (1990) The cascade-correlation learning architecture. In: Turetzky, D.
(Ed.), Advances in Neural Information Processing Systems, Vol.2, Morgan Kaufmann, San Francisco,
pp. 524–532.

Farmer, J. and Sidorowich (1987) Predicting chaotic time series, Phys. Rev. Lett. 59: 845.
Feigenbaum, M. (1989) Artificial Intelligence, A Knowledge-Based Approach, PWS-Kent, Boston.
Feldkamp, L.A. et al. (1992) Architecture and training of a hybrid neural-fuzzy system. In: Proceedings of the

Second International Conference on Fuzzy Logic & Neural Networks, Iizuka, Japan, pp. 131–134.
Feldman, J.A. (1989) Structured neural networks in nature and in computer science. In: R. Eckmiller and

C.v.d. Malsburg (Eds.),Neural Computers, Springer-Verlag, Berlin.
Feynman, R.P., Leighton, R.B., and Sands, M. (1965) The Feynman Lectures on Physics, Addison-Wesley,

Reading. MA.
Filev, D. (1991) Identification of fuzzy relational models. In: Proceedings of the IV IFSA Congress, Brussels,

pp. 82–85.
Fisher, D.H. (1989) Knowledge acquisition via incremental conceptual clustering, Mach. Learn. 2: 139–172.
Fisher, R. (1936) The use of multiple measurements in taxonomic problems. Ann. Eugenics 7.
Fodor, J. and Pylyshyn, Z. (1988) Connectionism and cognitive architecture: A critical analysis. Cognition 28:

3–71.
Fogel, D. (2002) Blondie 24. Playing at the Edge of AI, Morgan Kaufmann, San Diego.
Fogel, D., Fogel, L., and Porto, V. (1990) Evolving neural networks, Biol. Cybern. 63: 487–493.
Fogel, D.B. (2000) Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, 2d ed., IEEE

Press, Piscataway, NJ.
Freeman J.A.S. and Saad, D. (1997) Online learning in radial basis function networks. Neural Comput.9:

1601–1622.
Freeman, W. (1987) Simulation of Chaotic EEG Patterns with a dynamic model of the olfactory system, Biol.

Cybern. 56: 139–150.
Freeman, W. (1991) The physiology of perception, Sci. Amer. 2: 34–41.
Freeman, W. (2000) Neurodynamics, Springer, London
Freeman, W. (2001) How Brains Make Up Their Minds, Columbia University Press, NY.
Freeman, W. and Skarda, C. (1985) Spatial EEG patterns, nonlinear dynamics and perception: The neo-

Sherringtonian view, Brian Res. Rev. 10: 147–175.
Friend, T. (2000) Genome projects complete sequence, USA Today, June 23.
Fritzke, B. (1995) A growing neural gas network learns topologies. Adv. Neural Inf. Process. Syst. 7 MIT Press,

Ca, MA.
Fu, L. (1989) Integration of neural heuristics into knowledge-based inference. Connect. Sci. 1(3).
Fu, L. (1999) An expert network for DNA sequence analysis. IEEE Intell. Syst. Appl. 14(1): 65–71.
Fukuda, T., Komata, Y., and Arakawa, T. (1997) Recurrent neural networks with self-adaptive GAs for biped

locomotion robot. In: Proceedings of the International Conference on Neural Networks ICNN’97, IEEE
Press, Washington, DC.

Fukushima, K. (1987) Neural network model for selective attention in visual pattern recognition and associative
recall, Appl. Optics 26(23): 4985–4992.

Fukushima, K. (1997) Active vision: Neural network models. In: S. Amari and N. Kasabov (Eds.), Brain Like
Computing and Intelligent Information Systems, Springer Verlag, New York.

Fukushima, K., Miyake, S., and Ito, T. (1983) Neocognitron: A neural network model for a mechanism of
visual pattern recognition, IEEE Trans. Syst. Man Cybern SMC-13: 826–834.

References 423

Funahashi, K. (1989) On the approximate realization of continuous mappings by neural networks, Neural
Netw. 2: 183–192.

Furlanello, C., Giuliani, D., and Trentin, E. (1995) Connectionist speaker normalisation with generalised
resource allocation network. In: D. Toretzky, G. Tesauro, and T. Lean (Eds.), Advances in NIPS7, MIT
Press, Cambridge, MA, pp. 1704–1707.

Furuhashi, T., Hasegawa, T., Horikawa, S., and Uchikawa, Y. (1993) An adaptive fuzzy controller using fuzzy
neural networks. In: Proceedings of Fifth IFSA World Congress, pp. 769–772.

Furuhashi, T., Nakaoka, K., and Uchikawa, Y. (1994) A new approach to genetic based machine learning and
an efficient finding of fuzzy rules. In: Proceedings of the WWW’94 Workshop, University of Nagoya,
Japan, pp. 114–122.

Futschik, M. and Kasabov, N. (2002) Fuzzy clustering in gene expression data analysis. In: Proceedings of the
World Congress of Computational Intelligence WCCI’2002, Hawaii, May, IEEE Press, Washington, DC.

Futschik, M., Jeffs, A., Pattison, S., Kasabov, N., Sullivan, M., Merrie, A., and Reeve, A. (2002) Gene expression
profiling of metastatic and non-metastatic colorectal cancer cell-lines, Genome Lett. 1(1): 1–9.

Futschik, M., Reeve, A., and Kasabov, N. (2003a) Evolving connectionist systems for knowledge discovery
from gene expression data of cancer tissue, Artif. Intell. Med. 28:165–189.

Futschik, M., Sullivan, M., Reeve, A., and Kasabov, N. (2003b) Prediction of clinical behaviour and treatment
of cancers, Appl. Bioinf. 3: 553–558.

Fuzzy Logic Toolbox User’s Guide (2002) MathWorks Inc., 3 Apple Hill Drive, Natick, MA, Ver.2.
Gallant, S. (1993) Neural Network Learning and Expert Systems, MIT Press, Bradford, Cambridge, MA.
Gallinari, P., Thinia, S., and Fogelman-Soulie, F. (1988) Multilayer perceptrons and data analysis. In:

Proceedings of IEEE International Conference on Neural Networks, 24–27 July, USA, vol 2, pp. I391–I399.
Gates, G.F. (1985) Creatinine clearance estimation from serum creatinine values: An analysis of three mathe-

matical models of glomerular function, Am. J. Kidney Diseases 5: 199–205.
Gaussier, P. and Zrehen, S. (1994) A topological neural map for online learning: Emergence of obstacle

avoidance in a mobile robot, Animals Animats 3: 282–290.
Gerstner, W. and Kistler, W.M. (2002) Spiking Neuron Models, Cambridge University Press, Cambridge, UK.
Gervautz, M. and Purgathofer, W. (1990) A simple method for colour quantization: Octree quantization, In:

Glassner (Ed.) Graphics Gems, Academic Press, New York.
Gevrey, M., Dimopoulos, I., and Lek, S. (2003) Review and comparison of methods to study the contribution

of variables in artificial neural network models, Ecol. Model. 160: 249–264.
Gevrey, M., Worner, S., Kasabov, N., Pitta J., and Giraudel, J.-L. (2006) Estimating risk of events using SOM

models: A case study on invasive species establishment, Ecol. Model, 197, pp. 361–372.
Ghobakhlou, A. and Kasabov, N. (2004) A methodology and a system for adaptive integrated speech and

image learning and recognition, Int. J. Comput. Syst. Signals 5(2).
Ghobakhlou, A., Watts, M., and Kasabov, N. (2003) Adaptive speech recognition with evolving connectionist

systems, Inf. Sci. 156: 71–83.
Ghobakhlou, A., Zhang D., and Kasabov, N. (2004) An Evolving Neural Network Model for Person Verification

Combining Speech and Image, LNCS, vol. 3316, Springer, New York, pp. 381–386.
Giacometti, A., Amy, B., and Grumbach, A. (1992) Theory and experiments in connectionist AI: A tightly

coupled hybrid system. In: I. Aleksander and J. Taylor (Eds), Artificial Neural Networks, 2, Elsevier
Science Publishers B.V., pp. 707–710.

Gibson, M.A. and Mjolsness, E. (2001) Modelling the activity of single genes. In: J.M. Bower and H. Bolouri
(Eds.), Computational Modelling of Genetic and Biochemical Networks, MIT Press, Cambridge, MA,
pp. 3–48.

Giles, L., Lawrence, S., Bollacker, K., and Glover, E. (2000) Online computing: The present and the future. In:
P.P. Wang (Ed.), Proceedings of the Joint Conference on Information Sciences – JCIS, Atlantic City, p.
843.

Glarkson, T., Goarse, D., and Taylor, J. (1992) From wetware to hardware: Reverse engineering using proba-
bilistic RAM’s, J. Intell. Syst. 2: 11–30.

Glassberg, B.R. and Moore, B.C. (1990) Derivation of auditory filter shapes from notched noise data, Hearing
Res. 47: 103–108.

Gleick, J. (1987) Chaos: Making a New Science, Viking Press, New York
Goh, L. and Kasabov, N. (2005) An integrated feature selection and classification method to select minimum

number of variables on the case study of gene expression data, J. Bioinf. Comput. Biol. 3(5): 1107–1136.
Goldberg, D.E. (1989) Genetic Algorithms in Search, Optimisation and Machine Learning, Addison-Wesley,

Reading, MA.

424 Evolving Connectionist Systems

Golub, T.R. et al. (1999) Molecular classification of cancer: Class discovery and class prediction by gene
expression monitoring, Science 286: 531–537.

Gottgtroy, P., Kasabov, N., and Macdonell, S. (2006) Evolving ontologies for intelligent decision support. In:
E. Sanches (Ed.), Fuzzy Logic and the Semantic Web, Elsevier, New York, Chapter 21, pp. 415–439.

Gray, M.S., Movellan, J.R., and Sejnowski, T.J. (1997) Dynamic features for visual speech reading: A systematic
comparison. In: M.C. Mozer, M.I. Jordan, and T. Petsche (Eds.), Advances in Neural Information
Proceeding Systems, vol. 9, Morgan-Kaufmann, San Francisco, pp.751–757.

Greenwood, D. (1961) Critical bandwidth and the frequency coordinates of the basilar membrane, J� Acoust.
Soc. Am. 33: 1344–1356.

Greenwood, D. (1990) A cochlear frequency-position function for several species – 29 years later, J� Acoust.
Soc. Am. 87(6): 2592–2605.

Grossberg, S. (1969) On learning and energy - Entropy dependence in recurrent and nonrecurrent signed
networks, J. Statist. Phys. 1: .319–350.

Grossberg, S. (1982) Studies of Mind and Brain. Reidel, Boston.
Grossberg, S. (1988) Nonlinear neural networks: principles, mechanisms and architectures. Neural Netw. 1:

17–61.
Grossberg, S. and Merrill, J.W.L. (1996) The hippocampus and cerebellum in adaptively timed learning,

recognition and movement. J. Cognitive Neurosci. 8: 257–277.
Grover, L.K. (1996) A fast quantum mechanical algorithm for database search. In: STOC ’96: Proceedings of

the Twenty-Eighth Annual ACM Symposium on Theory of Computing, New York, ACM Press, New York,
pp. 212–219.

Guisan, A. and Zimmermann, N.E. (2000) Predictive habitat distribution models in ecology, Ecol. Model. 135:
147–186.

Gupta, M. (1992) Fuzzy logic and neural networks. In: Proceedings of the Second International Conference on
Fuzzy Logic & Neural Networks, Iizuka, Japan, July, 1992, pp. 157–160.

Gupta, M.M. and Rao, D.H. (1994) On the principles of fuzzy neural networks, Fuzzy Sets Syst. 61(1): 1–18.
Hagan, M.T., Debut, H.B., and Beale, M. (1996) Neural Network Design,. PWS, Boston.
Hall, L., Bensaid, A.M., Clarke, L.P., Velthuizen, R.P., Silbiger, M.S., and Bezdek, J.C. (1992) A comparison of

neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain.
IEEE Trans. Neural Netw. 3: 672–682.

Hall, P. and Martin. R. (1998) Incremental eigenanalysis for classification. In: British Machine Vision
Conference, Vol. 1, pp. 286–295.

Hamker, F.H. (2001) Life-long learning cell structures – Continuously learning without catastrophic inter-
ference, Neural Netw, Vol. 14, No. 4–5, 551–573.

Hamker F.H. and Gross H.-M. (1998) A lifelong learning approach for incremental neural networks. In:
Proceedings of the Fourteenth European Meeting on Cybernetics and Systems Research (EMSCR’98),
Vienna, pp. 599–604.

Han, J. and Kauber, M. (2000) Data Mining – Concepts and Techniques. Morgan Kaufmann, San Francisco.
Han, K.-H. and Kim, J.-H. (2002) Quantum-inspired evolutionary algorithm for a class of combinatorial

optimization, IEEE Trans.Evol. Comput, Vol. 6, No. 6, pp. 580–593.
Harris, C. (1990) Connectionism and cognitive linguistics, Connection Sci. 2(1&2): 7–33.
Hartigan, J. (1975) Clustering Algorithms. John Wiley and Sons, New York.
Hartmann, W.M. (1998) Signals, Sound, and Sensation, Springer Verlag, New York.
Hassibi, B. and Stork, D. (1992) Second order derivatives for network pruning optimal brain surgeon. Adv.

Neural Inf. Process. Syst. 5: 164–171, Morgan Kaufmann.
Hassoun, M. (1995) Fundamentals of Artificial Neural Networks, MIT Press, Cambridge, MA.
Hauptmann, W. and Heesche, K. (1995) A neural net topology for bidirectional fuzzy-neuro transformation.

In: Proceedings of the FUZZ-IEEE/IFES, Yokohama, Japan, pp. 1511–1518.
Havukkala, I., Benuskova, L., Pang, S., Jain, V., Kroon, R., and Kasabov, N. (2006) Image and fractal information

processing for large-scale chemoinformatics, genomics analyses and pattern discovery. In: Proceedings
of the International Conference on Pattern Recognition in Bioinformatics, PRIB06.

Havukkala, I., Pang, S., Jain, V., and Kasabov, N. (2005) Novel method for classifying microRNAs by Gabor
filter features from 2D structure bitmap images. J. Theor. Comput. Nanosci. 2(4): 506–513.

Hayashi, Y. (1991) A neural expert system with automated extraction of fuzzy if-then rules and its application
to medical diagnosis. In: R.P. Lippman, J.E. Moody, and D.S. Touretzky (Eds.), Advances in Neural
Information Processing Systems 3 Morgan Kaufman, San Mateo, CA, pp. 578–584.

Haykin, S. (1994) Neural Networks – A Comprehensive Foundation, Prentice-Hall, Upper Saddle River, NJ.
Haykin, S. (1999) Neural Networks - A Comprehensive Foundation, Prentice-Hall, Upper Saddle River, NJ.

References 425

Hebb, D. (1949) The Organization of Behaviour, Wiley, New York.
Hecht-Nielsen, R. (1987) Counter-propagation networks. In: IEEE First International Conference on Neural

Networks, San Diego, vol.2, pp. 19–31.
Heckbert, P. (1982) Colour image quantization for frame buffer display, Comput. Graph. (SIGGRAPH) 16:

297–307.
Hendler, J. and Dickens, L. (1991) Integrating neural network and expert reasoning: An example. In: L. Steels

and B. Smith (Eds.), Proceedings of AISB Conference, Springer Verlag, New York, pp. 109–116.
Herik, J. and Postma, E. (2000) Discovering the visual signature of painters. In: N. Kasabov (Ed.), Future

Directions for Intelligent Systems and Information Sciences, Physica Verlag (Springer Verlag), Berlin,
pp. 130–147.

Hertz, J., Krogh, A., and Palmer, R. (1991) Introduction to the Theory of Neural Computation, Addison-Wesley,
Reading, MA .

Heskes, T.M. and Kappen, B. (1993) Online learning processes in artificial neural networks. In: Mathematic
Foundations of Neural Networks, Elsevier, Amsterdam, pp. 199–233.

Hey, T. (1999) Quantum computing: An introduction, Comput. Control Eng. J. 10:(3, June): 105–112.
Hinton, G. (1987) Connectionist learning procedures, Computer Science Department, Carnegie-Mellon

University, Pittsburgh, PA.
Hinton, J. (Ed.) (1990) Connectionist symbol processing, Special Issue of Artif. Intell. 46.
Hirota, K. (1984) Image Pattern Recognition. McGraw-Hill, Tokyo.
Hodgkin, A.L. and Huxley, A.F. (1952) A quantitative description of membrane current and its application to

conduction and excitation in nerve,J. Physiol, 117: 500–544.
Hofstadter, D. (1979) Godel, Escher, Bach: An Eternal Golden Braid. Basic, New York.
Hogg, T. and Portnov, D. (2000) Quantum optimization, Inf. Sci. 128: 181–197.
Holland, J. (1992) Adaptation in Natural and Artificial Systems. MIT Press, Cambridge, MA.
Holland, J.H. (1998) Emergence. Oxford University Press, Oxford, UK.
Hopfield, J. (1982) Neural networks and physical systems with emergent collective computational abilities,

Proc. Nat. Acad. Sci. USA 79: 2554–2558.
Hopfield, J. and Tank, D. (1985) Neural computation of decisions in optimization problems, Biol. Cybern. 52:

141–152.
Hopfield, J., Feindtein, D., and Palmer, R. (1983) Unlearning has a stabilizing effect in collective memories,

Nature, 304: 158–159.
Hopkin, D. and Moss, B. (1976). Automata. Macmillan, New York.
Hoppensteadt, F. (1986) An Introduction to the Mathematics of Neurons. Cambridge University Press,

Cambridge, UK.
Hoppensteadt, F. (1989) Intermittent chaos, self-organisation and learning from synchronous synaptic activity

in model neuron networks, Proc. Nat. Acad. Sci. USA 86: 2991–2995.
Hornik, K. (1991) Approximation capabilities of multilayer feedforward networks, Neural Netw. 4: 251–257.
Hornik, K., Stinchcombe, M., and White, H. (1989) Multilayer feedforward networks are universal approxi-

mators, Neural Netw. 2(5): 359–366.
Howell, W.N. (2006) Genetic specification of recurrent neural networks: Initial thoughts. In: Proceedings

of the IEEE International Joint Conference on Neural Networks, Vancouver, July 16–21, IEEE Press,
Washington, DC, pp. 9370–9379.

Huang, L., Song, Q., and Kasabov, N. (2005) Evolving connectionist systems based role allocation of robots
for soccer playing. In: Joint 2005 International Symposium on Intelligent Control & 13th Mediterranean
Conference on Control and Automation (2005 ISIC-MED), June 27–29, Limassol, Cyprus.

Hubel, D.H. and Wiesel, T.N. (1962) Receptive fields, binocular interaction and functional architecture in the
cat’s visual cortex, J. Physiol 160: 106–154.

Hull, J.H., Hak, L.J., Koch, G.G., Wargin, W.A., Chi, S.L., and Mattocks, A.M. (1981) Influence of range of renal
function and liver disease on predictability of creatinine clearance. Clin. Pharmacol. Ther. 29:516–521.

Hunter, L. (1994) Artificial intelligence and molecular biology. Canad. Artif. Intell. 35(Autumn).
Hyvarinen, A., Karhunen, J., and Oja, E. (2001) Independent Component Analysis, John Wiley & Sons,

New York.
Ishikawa, M. (1992) A new approach to problem solving by modular structured networks. In: Proceedings of

the Second International Conference on Fuzzy Logic and Neural Networks, Iizuka, Japan, pp. 855–858.
Ishikawa, M. (1996) Structural learning with forgetting, Neural Netw. 9: 501–521.
Israel, S. and Kasabov, N. (1996) Improved learning strategies for multimodular fuzzy neural network systems:

A case study on image classification. Austral. J. Intell. Inf. Process. Syst. 3(2): 61–69.
Izhikevich, E.M. (2003) Simple model of spiking neurons, IEEE Trans. Neural Netw. 14: 1569.

426 Evolving Connectionist Systems

Jang, J.-S., Han, K.-H., and Kim, J.-H. (2003) Quantum-Inspired Evolutionary Algorithm-Based Face Verifi-
cation, LNCS, Springer, New York, pp. 2147–2156.

Jang, R. (1993) ANFIS: Adaptive network based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3):
665–685.

Jordan, M. and Jacobs, R. (1994) Hierarchical mixtures of experts and the EM algorithm, Neural Comput. 6:
181–214.

Joseph, S.R.H. (1998) Theories of adaptive neural growth, PhD Thesis, University of Edinburgh.
Jusczyk, P. (1997) The Discovery of Spoken Language, MIT Press, Cambridge, MA.
Kandel, E.R., Schwartz, J.H., and Jessell, T.M. (2000) Principles of Neural Science, fourth edn., McGraw-Hill,

New York,.
Karayiannis, N.B. and Mi, G.W. (1997) Growing radial basis neural networks: merging supervised and unsuper-

vised learning with network growth techniques. IEEE Trans. Neural Netw. 8: 1492–1506.
Kasabov, N. (1996) Foundations of Neural Networks, Fuzzy Systems and Knowledge Engineering. MIT Press,

Cambridge, MA.
Kasabov N. (1998a) ECOS: A framework for evolving connectionist systems and the ECO learning

paradigm. In: S. Usui and T. Omori (Eds.) Proceedings of ICONIP’98, IOS Press, Kitakyushu, Japan,
pp. 1222–1235.

Kasabov N. (1998b) Evolving fuzzy neural networks - Algorithms, applications and biological motivation. In:
T. Yamakawaand and G. Matsumoto (Eds.), Methodologies for the Conception, Design and Application
of Soft Computing, World Scientific, Singapore, pp. 271–274.

Kasabov, N. (1999) Evolving connectionist systems and applications for adaptive speech recognition. In:
Proceedings of IJCNN’99, Washington DC, July, IEEE Press, Washington, DC.

Kasabov, N. (Ed.) (2000a) Future Directions for Intelligent Systems and Information Sciences, Physica-Verlag
(Springer Verlag). Heidelberg.

Kasabov, N. (2000b) Evolving and evolutionary connectionist systems for online learning and knowledge
engineering. In: P.Sincak, and J. Vascak (Eds.), Quo Vadis Computational Intelligence? New Trends and
Approaches in Computational Intelligence, Physica-Verlag, Heidelberg, pp. 361–369.

Kasabov N (2001a) Evolving fuzzy neural networks for online supervised/unsupervised, knowledge–based
learning. IEEE Trans. SMC–B Cybern. 31(6): 902–918.

Kasabov, N. (2001b) Adaptive learning system and method, Patent, PCT WO 01/78003 A1.
Kasabov, N. (2001c) Ensembles of EFuNNs: An architecture for a multi-module classifier. In: Proceedings of

the International Conference on Fuzzy Systems, Australia, vol. 3, 1573–1576.
Kasabov, N. (2002) Evolving Connectionist Systems: Methods and Applications in Bioinformatics, Brain Study

and Intelligent Machines. Springer Verlag, London
Kasabov, N. (2003) Evolving connectionist-based decision support systems. In: X. Yu and J. Kacprzyk (Eds.),

Applied Decision Support with Soft Computing, Series: Studies in Fuzziness and Soft Computing, vol.
124, Springer, New York.

Kasabov, N. (2004) Knowledge based neural networks for gene expression data analysis, modelling and profile
discovery, Drug Discovery Today: BIOSILICO 2(6, Nov.): 253–261.

Kasabov, N. (2007a) Brain-, gene-, and quantum-inspired computational intelligence: challenges and oppor-
tunities, in: W. Duch and J. Mandzink (Eds.), Challenges in Computational Intelligence, Springer,
New York.

Kasabov, N. (2006) Adaptation and interaction in dynamical systems: Modelling and rule discovery through
evolving connectionist systems, Appl. Soft Comput. 6(3): 307–322.

Kasabov, N. (2007) Global, local and personalised: Modelling and profile discovery in bioinformatics, Patt.
Recogn. Lett. 28, pp. 673–685.

Kasabov, N. and Benuskova, L. (2004) Computational neurogenetics, Int. J. Theor. Comput. Nanosci. 1(1):
47–61.

Kasabov, N. and Dimitrov, D. (2004) Discovering gene regulatory networks from gene expression data with the
use of evolving connectionist systems. In: L. Wang and J. Rajapakse (eds) Neural Information Processing,
vol. 152, Springer Verlag, New York.

Kasabov N. and Iliev, G. (2000) A methodology and a system for adaptive speech recognition in a noisy
environment based on adaptive noise cancellation and evolving fuzzy neural networks. In: H. Bunke
and A. Kandel (Eds.), Neuro-Fuzzy Pattern Recognition, World Scientific, Singapore, pp. 179–203.

Kasabov, N. and Kozma, R. (Eds.) (1999) Neuro-Fuzzy Techniques for Intelligent Information Systems, Physica-
Verlag (Springer Verlag), Heidelberg.

Kasabov, N. and Pang, S. (2004) Transductive support vector machines and applications in bioinformatics for
promoter recognition, Neural Inf. Process. Lett. Rev. 3(2): 31–38.

References 427

Kasabov, N. and Song, Q. (2002) DENFIS: Dynamic, evolving neural–fuzzy inference systems and its application
for time-series prediction. IEEE Trans. Fuzzy Syst. 10: 144–154.

Kasabov, N., Bakardjian, H., Zhang, D., Song, Q., Cichocki, A., and van Leeuwen, C. (2007) Evolving connec-
tionist systems for adaptive learning, classification and transition rule discovery from EEG data: A case
study using auditory and visual stimuli, Int. J. Neural Systems, in print.

Kasabov, N., Benuskova, L., and Wysoski, S.G. (2005a) Computational neurogenetic modeling: integration of
spiking neural networks, gene networks, and signal processing techniques. In: W. Duch et al. (Eds.),
ICANN 2005, LNCS 3697, Springer-Verlag, Berlin, pp. 509–514.

Kasabov, N., Benuskova, L., and Wysoski, S. (2005b) Biologically plausible computational neurogenetic models:
Modeling the interaction between genes, neurons and neural networks, J. Comput. Theor. Nanosci.
2(4, December): 569–573(5).

Kasabov, N., Chan, S.H., Jain, V., Sidirov, I., and Dimitrov S.D. (2004) Gene Regulatory Network Discovery
from Time-Series Gene Expression Data – A Computational Intelligence Approach , LNCS, vol. 3316,
Springer-Verlag, New York, pp. 1344–1353.

Kasabov, N., Gottgtroy, P., Benuskova, L., Jain, V., Wysoski, S., and Josef, F. (2006b) Brain-gene ontology. In:
Proceedings of HIS/NCEI06, Auckland, NZ, IEEE Computer Society Press, Washington, DC.

Kasabov, N., Israel, S., and Woodford, B. (2000a) Methodology and evolving connectionist architecture for
image pattern recognition. In: Pal, Ghosh and Kundu (Eds.), Soft Computing And Image Processing,
Physica-Verlag, Heidelberg.

Kasabov, N., Israel, S., and Woodford, B.J. (2000b) Hybrid evolving connectionist systems for image classifi-
cation, J. Adv. Comput. Intell. 4(1): 57–65.

Kasabov, N., Kim, J.S., Watts, M., and Gray, A. (1997) FuNN/2 - A fuzzy neural network architecture for
adaptive learning and knowledge acquisition, Inf. Sci. Appl. 101(3–4): 155–175.

Kasabov, N., Postma, E., and van den Herik, J. (2000c) AVIS: A connectionist-based framework for integrated
auditory and visual information processing, Inf. Sci. 123: 127–148.

Kasabov, N., Sidorov, I.A., and Dimitrov, D.S. (2005c) Computational intelligence, bioinformatics and compu-
tational biology: A brief overview of methods, problems and perspectives, J. Comput. .Theor. Nanosci.
2(4): 473–491.

Kasabov, N., Song Q., and Nishikawa I. (2003) Evolutionary computation for dynamic parameter optimisation
of evolving connectionist systems for online prediction of time series with changing dynamics. In:
Proceedings of IJCNN’2003, Portland, Oregon, July, vol.1, pp. 438–443.

Kater, S.B., Mattson, N.P., Cohan, C., and Connor, J. (1988) Calcium regulation of the neuronal cone growth,
Trends Neurosci. 11: 315–321.

Kecman, V. (2001) Learning and Soft Computing (Support Vector Machines, Neural Networks, and Fuzzy
Systems), MIT Press, Cambridge, MA.

Kennedy, J. and Eberhart, R. (1995) Particle swarm optimization. In: Proceedings of IEEE International
Conference on Neural Networks, Australia, vol. IV, pp. 1942–1948.

Kennedy, J. and Eberhart, R. (2001) Swarm Intelligence. Academic Press, San Diego.
Kennedy, J. and Eberhart, R.C. (1997) A discrete binary version of the particle swarm algorithm. In: IEEE

Conference on Computational Cybernetics and Simulation, Systems, Man, and Cybernetics, vol. 5,
pp. 4104–4108.

Khan et al. (2001) Classification and diagnostic prediction of cancers using gene expression profiling and
artificial neural networks, Nature Med. 7: 673–679.

Kidera, T., Ozawa, S., and Abe, S. (2006), An incremental learning algorithm of ensemble classifier systems.
In: Proceedings of the IEEE International Joint Conference on Neural Networks, Vancouver, July 16–21,
IEEE Press, Washington, DC, pp. 6453–6459.

Kim, J., Mowat, A., Poole, P., and Kasabov, N. (2000) Linear and nonlinear pattern recognition models for
classification of fruit from visible-near infrared spectra, Chemometrics Intell. Lab. Syst. 51: 201–216.

Kim, J.S. and Kasabov, N. (1999) HyFIS: Adaptive neuro-fuzzy systems and their application to nonlinear
dynamical systems, Neural Netw. 12(9): 1301–1319.

Kim, K., Relkin, N., Min-lee, K., and Hirsch, J. (1997) Distinct cortical areas associated with native and second
languages, Nature, 388–392.

Kitamura, T. (Ed.) (2001) What Should Be Computed to Understand and Model Brain Functions? World
Scientific, Singapore.

Kleppe, I.C. and Robinson, H.P.C. (1999) Determining the activation time course of synaptic AMPA receptors
from openings of colocalized NMDA receptors. Biophys. J. 77: 1418–1427.

Koch, C. and Hepp, K. (2006) Quantum mechanics in the brain, Nature 440(30, March).
Koczy, L. and Zorat, A. (1997) Fuzzy systems and approximation, Fuzzy Sets Syst. 85: 203–222.

428 Evolving Connectionist Systems

Kohonen, T. (1977) Associative Memory. A System-Theoretical Approach, Springer-Verlag, Berlin.
Kohonen T. (1982) Self-organised formation of topology correct feature maps. Biol. Cybern. 43: 59–69.
Kohonen, T. (1990) The self-organizing map, Proc. IEEE 78(N-9): 1464–1497.
Kohonen, T. (1993) Physiological interpretation of the self-organising map algorithm, Neural Netw.6.
Kohonen T. (1997) Self-Organizing Maps, 2d ed., Springer Verlag, New York.
Kolmogorov, A. (1957) On the representations of continuous functions of many variables by superpositions

of continuous functions of one variable and addition, Dokladi Academii Nauk USSR, 114(5): 953–956
(in Russian).

Koprinska, I. and Carrato, S. (1998) Video segmentation of MPEG compressed data. In: Proceedings of
ICECS’98, Lisboa, Portugal, pp. 243–246.

Koprinska, I. and Kasabov, N. (2000) Evolving fuzzy neural network for camera operation recognition, In:
Proceedings of the International Conference on Pattern Recognition, September 3–7, ICPR, Barcelona
vol. II, pp. 523–526.

Kosko, B. (1992) Fuzzy systems as universal approximators In: Proceedings of IEEE Fuzzy System Conference,
San Diego, pp. 1153–1161.

Kouda, N., Matsui, N., Nishimura, H., and Peper, F. (2005) Qubit neural network and its learning efficiency,
Neural Comput. Appl. 14: 114–121.

Koza, J. (1992) Genetic Programming, MIT Press, Cambridge, MA.
Kozma, R. and Kasabov, N. (1998) Chaos and fractal analysis of irregular time series embedded into connec-

tionist structure. In: S. Amari and N. Kasabov (Eds.), Brain-Like Computing And Intelligent Information
Systems, Springer Verlag, Singapore, pp. 213–237.

Kozma, R. and Kasabov, N. (1999) Generic neuro-fuzzy-chaos methodologies and techniques for intelligent
time-series analysis. In: R. Ribeiro, R. Yager, H.J. Zimmermann, and J. Kacprzyk (Eds.), Soft Computing
in Financial Engineering. Physica-Verlag, Heidelberg.

Kozma, R. and Kasabov, N. (1998) Rules of chaotic behaviour extracted from the fuzzy neural network FuNN.
In: Proceedings of the WCCI’98 FUZZ-IEEE International Conference on Fuzzy Systems, Anchorage.

Krogh, A. and Hertz, J.A. (1992) A simple weight decay can improve generalization. Adv. Neural Inf. Process.
Syst. 4: 951–957.

Kuhl, P. (1994) Speech perception. In: F. Minifie (Ed.), Introduction to Communication Sciences and Discorse,
Singular, San Diego, pp. 77–142.

Kurkova, V. (1992) Kolmogorov’s theorem and multiplayer networks, Neural Netw. 501–506.
Lakoff, G. and Johnson, M. (1999). Philosophy in the Flesh. Basic, New York.
Lange, T. and Dyer, M. (1989) High-level inference in a connectionist network. Connect. Sci. 1(2): 181–217.
Lawrence, S., Fong, S., and Giles, L. (1996) Natural language grammatical inference: A comparison of recurrent

neural networks and machine learning methods. In S. Wermtner, E. Riloff, and G. Scheler (Eds.),
Symbolic, Connectionist and Statistical; Approaches to Learning for Natural Language Processing, LNAI,
Springer, New York, pp. 33–47.

Laws, M., Kilgour, R., and Kasabov, N. (2003) Modelling the emergence of bilingual acoustic clusters: A prelim-
inary case study� Inf. Sci. 156: 85–107.

Le Cun, Y., Denker, J.S., and Solla, S.A. (1990) Brain damage. In: D. Touretzky (Ed.), Advances in Neural
Information Proessing. Systems, Morgan Kaufmann, San Francisco, No. 2, 598–605.

Lee, C., Gauvin, J., Pierracini, R., and Rabiner, L. (1993) Sub-word based large vocabulary speech recognition,
AT&T Tech. J. (Sept/Oct): 25–36.

Lehner, W.G. (1988) Symbolic/subsymbolic sentence analysis: exploiting the best of two worlds. In J. Barnden
and J. Pollack (Eds.), Advances in Connectionist and Neural Computation Theory. Ablex, Norwood, NJ.

Lek, S. and Guégan, J.F. (1999) Artificial neural networks as a tool in ecological modelling, an introduction,
Ecol. Model. 120: 65–73.

Lek, S., Delacoste, M., Baran, P., Dimopoulos, I., Lauga, J., and Aulagnier, S. (1996) Application of neural
networks to modelling non linear relationship in ecology. Ecol. Model. 90: 39–52.

Levey, A.S., Bosch, J.P., Lewis, J.B., Greene, T., Rogers, N., and Roth, D. (1999) For the modification of diet in
renal disease study group, a more accurate method to estimate glomerular filtration rate from serum
creatinine: A new prediction equation, Annals Internal Med. 130: 461– 470.

Li, F., Xie, C., Zheng, D., and Zheng, B. (2006) Feedback quantum neuron for multiuser detection. In:
Proceedings of the IEEE International Joint Conference on Neural Networks, Vancouver, July 16–21, IEEE
Press, Washington, DC, pp. 5274–5278.

Liberman, A., Cooper, F., Shankweiler, D., and Studdert-Kennedy, M. (1967) Perception of the speech code.
Psychol. Rev. 74: 431–461.

References 429

Lim, C.P. and Harrison, F.P. (1997) An incremental adaptive network for unsupervised learning and probability
estimation. Neural Netw. 10: 925–939

Lin, C.T. and Lee, C.S.G. (1996) Neuro Fuzzy Systems, Prentice-Hall, Upper Saddle River, NJ.
Lippman, R. (1987) An introduction to computing with neural nets, IEEE ASSP Mag. (April):.4–21.
Lippman, R. (1989) Review of neural networks for speech recognition, Neural Comput. 1–38.
Liu, J., Xu, W., and Sun, J. (2005) Quantum-behaved particle swarm optimization with mutation operator. In:

Seventeenth IEEE International Conference on Tools with Artificial Intelligence (ICTAI’05).
Liu, Y. and Yao, X. (1999) Simultaneous training of negatively correlated neural networks in an ensemble,

IEEE Trans. SMC B 29(6): 716–725.
Liu, Y., Yao, X., and Higuchi, T. (2000) Evolutionary ensembles with negative correlation learning, IEEE Trans.

EC 4(4): 380–387.
Lloyd, S.P. (1982) Least squares quantization in PCM. IEEE Trans. Inf. Theor. 28(2): 129–137.
Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D., and Darnell, J. (2000) Molecular Cell Biology.

4th edn. W.H. Freeman, New York.
Luettin J., Thacker, N.A., and Beet, S.W. (1996) Active shape models for visual speech feature extraction.

In: D.G. Storck and M.E. Heeneeke (Eds.), Speechreading by Humans and Machines, Springer, Berlin,
pp. 383–390.

Lukashin, A.V. and Borodovski, M. (1998) GeneMark.hmm: New solutions for gene finding, Nucleic Acids
Res. 26: 1107–1115.

Maass, W. (1996) Networks of Spiking Neurons: The Third Generation of Neural Network Models, Australian
National University, Canberra.

Maass, W. (1998) Computing with spiking neurons. In: W. Maass and C.M. Bishop (Eds.), Pulsed Neural
Networks, MIT Press, Cambridge, MA, Chapter 2, pp. 55–81.

Machado, R.J. and da Rocha, A.F. (1992) Evolutive fuzzy neural networks. In: Proceedings of the First IEEE
Conference on Fuzzy Systems, pp. 493–499.

Macilwain, C. et al. (2000) World leaders keep phrase on human genome landmark, Nature, 405: 983–985.
Maclagan, M. (1982) On acoustic study of New Zealand vowels. NZ Speech Therap. J.37(1): 20–26.
MacQueen, J. (1967) Some methods for classification and analysis of multivariate observations. In: L.M. LeCam

and J. Neyman (Eds.), Proceedings of the Fifth Berkeley Symposium of Mathematical Statistics and
Probability, vol. I, University of California Press, San Francisco, pp. 281–297.

Mamdani, E. (1977) Application on fuzzy logic to approximate reasoning using linguistic synthesis, IEEE
Trans. Comput. C-26(12): 1182–1191.

Mandziuk, J. and Shastri, L. (1998) Incremental class learning approach and its application to hand-written
digit recognition. In: Proceedings of the Fifth International Conference on Neuro-Information Processing,
Kitakyushu, Japan, October 21–23.

Manel, S., Dias, J.M., and Ormerod, J.S. (1999) Comparing discriminant analysis, neural networks and logistic
regression for predicting species distributions: A case study with a Himalayan river bird, Ecol. Model.
120: 337–347.

Marcus, G. (2004) The Birth of the Mind: How a Tiny Number of Genes Creates the Complexity of the Human
Mind. Basic, New York.

Marshall, M.R., Song, Q., Ma, T.M., MacDonell, S., and Kasabov, N. (2005) Evolving connectionist system versus
algebraic formulae for prediction of renal function from serum creatinine� Kidney Int. 67: 1944–1954.

Martinez, T.M. and Schulten, K.J. (1991) A ‘neural gas’ network learns topologies. In: Artificial Neural
Networks, Amsterdam, vol. I, 397–402.

Martinez, T.M., Berkovich, S.G., and Schulten, K..J. (1993) Neural gas network for vector quantization and its
applications to time-series prediction, IEEE Trans. Neural Netw. 4: 558–569.

Massaro, D. and Cohen, M. (1983) Integration of visual and auditory information in speech perception.
J. Exper.Psychol.: Hum. Percep. Perform. 9: 753–771.

MATLAB Tutorial Book (2000) Mathworks.
Matsumoto, G. (2000) Elucidation of the principle of creating the brain and its expression, RIKEN BSI News,

No.8, May 2000, RIKEN, Japan, 2–3.
Matsumoto, G., Ichikawa, M., and Shigematsu, Y. (1996) Brain computing. In: Methodologies for Conception,

Design, and Application of Intelligent Systems, World Scientific, Singapore, pp. 15–24.
Mattia, M. and del Giudice, P. (2000) Efficient event-driven simulation of large networks of spiking neurons

and dynamical synapses. Neural Comput. 12(10): 2305–2329.
McCauley, J.L. (1994) Chaos, Dynamics and Fractals, An Algorithmic Approach to Deterministic Chaos.

Cambridge University Press, Cambridge, UK.

430 Evolving Connectionist Systems

McClelland, J. and Rumelhart, D. et al. (1986) Parallel Distributed Processing, vol. II, MIT Press,
Cambridge, MA.

McClelland, J., McNaughton, B., and O’Reilly, R. (1995) Why are there complementary learning systems in the
hippocampus and neocortex: insights from the success and failure of connectionist models of learning
and memory. Psychol. Rev. 102: 419–457.

McClelland, J.L., Rumelhart, D.E., and Hinton, G.E. (1986) A general framework for PDP. In: D.E. Rumelhart,
J.L. McClelland, and PDP Research Group, Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, vol. 1: Foundations, MIT Press, Cambridge, MA.

McCulloch, W.S. and Pitts, W. (1943) A logical calculus of the ideas immanent in nervous activity, Bull. Math.
Biophys. 5: 115–133.

McMillan, C., Mozer, M., and Smolensky, P. (1991) Learning explicit rules in a neural network. In Proceedings
of the International Conference on Neural Networks, vol. 2, IEEE, New York, pp. 83–88.

Medsker, L. (1994) Design and Development of Hybrid Neural Network and Expert Systems. IEEE, Washington,
DC, pp.1470–1474.

Mel, B.W. (1998) SEEMORE: Combining colour, shape, and texture histrogramming in a neurally-inspired
approach to visual object recognition, Neural Comput. 9: 777–804.

Mendel, J.M. (2001) Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions, Prentice-
Hall, Englewood Cliffs, NJ, pp. 197–203.

Metcalfe, A. (1994) Statistics in Engineering – A Practical Approach, Chapman & Hall, London.
Michaliewicz, Z. (1992) Genetic Algorithms + Data Structures = Evolutionary Programs. Springer-Verlag,

Berlin.
Miesfeld, M. (1999) Applied Molecular Genetics. John Wiley and Sons, New York
Miller, D., Zurada, J., and Lilly, J.H. (1996) Pruning via dynamic adaptation of the forgetting rate in structural

learning, Proc. IEEE ICNN’96, 1: 448.
Minku, F.L. and Ludermir, T.B. (2005) Evolutionary strategies and genetic algorithms for dynamic parameter

optimisation of evolving fuzzy neural networks. In: Proceedings of IEEE Congress on Evolutionary
Computation, (CEC), Edinburgh, September, vol. 3, pp. 1951–1958.

Minku, F.L. and Ludermir, T.B. (2006) EFuNNs ensembles construction using a clustering method and a
coevolutionary genetic algorithm. In: Proceedings of the IEEE Congress on Evolutionary Computation,
Vancouver, July 16–21, IEEE Press, Washington, DC, pp. 5548–5555.

Minsky, M.L. and Papert, S. (1969) Perceptrons: An Introduction to Computational Geometry, MIT Press,
Cambridge, MA, 2nd edn. 1988.

Mitchell, M.T. (1997) Machine Learning, McGraw-Hill, New York.
Mitra, S. and Hayashi, Y. (2000) Neuro-fuzzy rule generation: Survey on soft computing framework, IEEE

Trans. Neural Netw. 11(3): 748–768.
Mohan, N. and Kasabov, N. (2005) Transductive modelling with GA parameter optimisation. In: IJCNN 2005

Conference Proceedings, vol. 2, IEEE Press, Washington, DC, pp. 839–844.
Moody, J. and Darken, C. (1988) Learning with localized receptive fields. In: D. Touretzky, G. Hinton, and

T. Sejnowski (Eds.) Proceedings of the 1988 Connectionist Models Summer School, Carnegie Mellon
University, Morgan Kaufmann, San Mateo, CA.

Moody, J. and Darken, C. (1989) Fast learning in networks of locally-tuned processing units. Neural Comput.
1: 281–294.

Moore, A.W. (1990) Acquisition of dynamic control knowledge for a robotic manipulator. In: Proceedings of
the Seventh International Conference on Machine Learning, pp.244–252, Austin, TX: Morgan Kaufman,
San Francisco.

Moore, B.C. and Glassberg, B.R. (1983) Suggested formulae for calculating auditory filter bandwidths and
excitation patterns, J. Acoust. Soc. Am. 74(3): 750–753.

Moore, D.S. and McCabe, G.P. (1999) Introduction to the Practice of Statistics, W.H. Freeman, New York.
Morasso, P., Vercelli, G., and Zaccaria, R. (1992) Hybrid systems for robot planning. In: I. Aleksander and

J. Taylor (Eds.), Artificial Neural Networks 2, Elsevier Science Publ. B.V., pp. 691–697.
Morgan, D. and Scofield, C. (1991) Neural Networks and Speech Processing, Kluwer Academic, Dordrecht.
Mount, S. (1982) A catalogue of splice junction sequences. Nucleic Acids Res. 10(2): 459–472.
Mozer, M., Smolensky, P. (1989) A technique for trimming the fat from a network via relevance assessment.

In: D. Touretzky (Ed.), Advances in Neural Information Processing Systems, vol. 2, Morgan Kaufmann,
San Francisco, pp. 598–605.

Murata, N., Müller, K.-R., Ziehe, A., and Amari, S. (1997) Adaptive online learning in changing environments.
In: Proceedings of the Conference on Neural Information Processing Systems (NIPS 9), MIT Press,
Cambridge, MA, pp. 599–604.

References 431

Murphy, P. and Aha, D. (1992) UCI Repository of Machine Learning Databases. Department of Information
and Computer science, University of California, Irvine.

Narayanan, A. and Meneer, T. (2000) Quantum artificial neural network architectures and components, Inf.
Sci., 128(3–4), 231–255.

Neisser, U. (Ed.) (1987) Concepts and conceptual development, Cambridge University Press, Cambridge, UK.
Nelson, M. and Rinzel, J. (1995) The Hodgkin-Huxley model. In: J.M. Bower and Beeman (Eds.), The Book of

Genesis, Springer, New York, Chapter 4, pp. 27–51.
Neural Network Toolbox User’s Guide (2001) The Math Works, ver. 4.
Newell, A. and Simon, H.A. (1972) Human Problem Solving, Prentice-Hall, Englewood Cliffs, NJ.
Nguyen, M.N., Guo, J.F., and Shi, D. (2006) ESOFCMAC: Evolving self-organizing fuzzy cerebellar model

articulation controller. In: Proceedings of the IEEE International Joint Conference on Neural Networks,
Vancouver, July 16–21, IEEE Press, Washington, DC, pp. 7085–7090.

Nijholt, A. and Hulstijn, J. (Eds.) (1988) Formal semantics and pragmatics of dialogue. In: Proceedings
Twendial’98 (TWLT13), University of Twente, The Netherlands.

Nikolaev, N.Y. and Iba, H. (2006) Adaptive Learning of Polynomial Networks, Series in Genetic and Evolu-
tionary Computation, D.E. Goldberg and J.R. Koza, (Series Eds.), Springer, New York.

Nolfi, S. and Floreano, D. (2000) Evolutionary Robotics, MIT Press, Cambridge, MA.
Oja, E. (1992) Principle components, minor components and linear neural networks, Neural Netw. 5: 927–935.
Okabe, A., Boots, B., and Sugihara, K. (1992) Spatial Tessellations – Concepts and Applications of Voronoi

Diagrams, John Wiley & Sons, New York.
Omlin, C. and Giles, C. (1994) Constructing Deterministic Finite-State Automata in Sparse Recurrent Neural

Networks, IEEE, Washington, DC, pp. 1732–1737.
Owens, F.J. (1993) Signal Processing of Speech. Macmillan, New York.
Ozawa, S., Pang, S., and Kasabov, N. (2004a) A Modified Incremental Principal Component Analysis

for online Learning of Feature Space and Classifier, LNAI, vol. 3157, Springer-Verlag, Berlin,
pp. 231–240.

Ozawa, S., Pang, S., and Kasabov, N., (2004b) One-Pass Incremental Membership Authentication by Face
Classification, LNCS, vol. 3072, D. Zhang and A. Jain (Eds.), Springer-Verlag, Berlin, pp. 155–161.

Ozawa, S., Pang, S., and Kasabov, N. (2006) An incremental principal component analysis for chunk data. In:
Proceedings of the IEEE International Conference on Fuzzy Systems, Vancouver, July 16–21, IEEE Press,
Washington, DC, pp. 10493–10500.

Ozawa, S., Toh, S.L., Abe, S., Pang, S., and Kasabov, N. (2005b) Incremental learning for online face recog-
nition. In: Proceedings of the IEEE International Joint Conference on Neural Networks, Montreal,
July 31–August 4, IEEE Press, Washington, DC, pp. 3174–3179.

Ozawa, S., Too, S., Abe, S., Pang, S., and Kasabov, N. (2005a) Incremental learning of feature space and
classifier for online face recognition, Neural Netw. (August): 575–584.

Pal, N. (1999) Connectionist approaches for feature analysis. In: N. Kasabov and R. Kozma (Eds.) Neuro-
Fuzzy Techniques for Intelligent Information Systems, Physica-Verlag (Springer-Verlag), Heidelberg,
pp. 147–168.

Pal, N. and Bezdek, J.C. (1995) On cluster validity for the fuzzy c-means model, IEEE Trans. Fuzzy Syst.,
Vol. 3, Issue 3, 370–379.

Pal, S., Ghosh, and Kundu (Eds.) (2000) Soft Computing and Image Processing, Physica-Verlag (Springer
Verlag), Heidelberg.

Pang, S. and Kasabov, N. (2004) Inductive vs transductive inference, global vs local models: Svm, tsvm, and
svmt for gene expression classification problems. In Proceedings of the International Joint Conference
on Neural Networks, IJCNN 2004, Budapest, 16–30 June, IEEE Press, Washington, DC.

Pang, S. and Kasabov, N. (2006) Investigating LLE Eigenface on Pose and Face Identification, LNCS, vol. 3972,
pp. 134–139.

Pang, S., Havukkala, I., and Kasabov N. (2006) Two-Class SVM Trees (2-SVMT) for Biomarker Data Analysis,
LNCS, vol. 3973, Springer, New York, pp. 629–634.

Pang, S., Ozawa, S., and Kasabov, N. (2005) One-pass incremental membership authentication by face classi-
fication, Int. J. Comput. Vis.

Pang, S., Ozawa, S., and Kasabov, N. (2005a) Chunk Incremental LDA Computing on Data Streams, LNCS,
vol. 3497, Springer, New York.

Pang, S., Ozawa, S., and Kasabov, N. (2005b) Incremental linear discriminant analysis for classification of
data streams, IEEE Trans. SMC-B, 35(5): 905–914.

Pao, Y.-H. (1989) Adaptive Pattern Recognition and Neural Networks, Addison-Wesley, Reading, MA.
Parisi, D. (1997) An artificial life approach to language. Brain Lang. 59: 121–146.

432 Evolving Connectionist Systems

Penrose, R. (1989) The Emperor’s New Mind, Oxford University Press, Oxford, UK.
Penrose, R. (1994) Shadows of the Mind. A Search for the Missing Science of Consciousness, Oxford University

Press, Oxford, UK.
Perkowski, M.A. (2005) Multiple-valued quantum circuits and research challenges for logic design and compu-

tational intelligence communities, IEEE Comp. Intell. Soc. Mag. (November).
Perlovski, L. (2006) Towards Physics of the Mind: Concepts, Emotions, Consciousness, and Symbols, Phy.

Life Rev. 3(1), pp. 22–55.
Perou, M.P. et al. (2000) Molecular portraits of human breast tumours, Nature 406: 747–752.
Persidis, A. (2000) Data mining in biotechnology, Nature 18(2):237–238.
Petersen, S. (1990) Training neural networks to analyse biological sequences. Trends Biotechnol. 8(11): 304–308.
Pevzner, P. (2001) Computational Molecular Biology, MIT Press, Cambridge, MA.
Picone, J. (1993) Signal modelling techniques in speech recognition. In: Proceedings of IEEE 81(9, Sept):

1215–1247.
Pinker, S. (1994) The Language Instinct: How the Mind Creates Language. Penguin, London.
Pinker, S. and Prince, A. (1988) On language and connectionism: Analysis of a PDP model of language

acquisition, Cognition 28: 1–2, 73–193.
Platt, J. (1991) A resource allocating network for function interpolation. Neural Comput. 3: 213–225.
Plotkyn, H.C. (1994) The Nature of Knowledge, Penguin, London.
Plunkett, K. (1996) Connectionist approaches to language acquisition. In: Fletcher and MacWhinney (Eds.),

The Handbook of Child Language. Oxford: Blackwell, pp. 36–72.
Poggio, T. (1994) Regularization theory, radial basis functions and networks. In: From Statistics to Neural

Networks: Theory and Pattern Recognition Applications. NATO ASI Series, No. 136, pp. 83–104.
Poggio, T. and Girosi, F. (1990) Regularisation algorithms for learning that are equivalent to multiplayer

networks. Science 247: 978–982.
Port, R. and van Gelder, T. (Eds.) (1995) Mind as Motion (Explorations in the Dynamics of Cognition). MIT

Press, Cambridge, MA.
Potter, M.A. and De Jong, K.A. (2000) Cooperative coevolution: An architecture for evolving co-adaptive

sub-components, Evol. Comput. 8(1): 1–29.
Pribram, K. (1993) Rethinking neural networks: Quantum fields and biological data. In: Proceeding of the

First Appalachian Conference on Behavioral Neurodynamics. Lawrence Erlbaum, Hillsdate, NJ.
Protégé Ontology Software Environment, http://protege.stanford.edu/.
Purves, D. and Lichtman, J.W. (1985) Principles of Neural Development, Sinauer, Sunderland, MA.
Qian, N. and Sejnowski, T.J. (1988) Predicting the secondary structure of globular protein using neural network

models, J. Molec. Biol. 202: 065–084.
Quartz, S.R. and Sejnowski, T.J. (1997) The neural basis of cognitive development: a constructivist manifesto,

Behav. Brain Sci. 20(4): 537–596.
Quinlan, J. (1986) Induction of decision trees, Mach. Learn. 1: 1.
Quiroga, R.Q. (1998) Dataset #3: Tonic-clonic seizures: www.vis.caltech.edu/∼rodri/data.htm .
Rabiner, L. (1989) A tutorial on hidden Markov models and selected applications in speech recognition, Proc.

IEEE 77(2): 257–285.
Rabiner, L. and Juang, B. (1993) Fundamentals of Speech Recognition. Prentice-Hall, Upper Saddle River, NJ.
Rajapakse, J., Kruggel, F., Zysset, S., and von Cramon, D.Y. (1998) Neuronal and hemodynamic events from

fMRI time series, J. Advan. Comput. Intell. 2(6): 185–194.
Ralescu, A. and Iwamoto, I. (1993) Recognition and reasoning about facial expressions using fuzzy logic. In:

Proceedings of RO-MAN’ 93 Conference, Tokyo.
Ramaswamy, S., et al. (2001) Multiclass cancer diagnosis using tumor gene expression signatures, Proc. Nat.

Acad. Sci. USA 98(26): 15149.
Ray, K. and Ghoshal. J. (1997) Neuro-fuzzy approach to pattern recognition, Neural Netw. 10(1): 161–182.
Reed, R. (1993) Pruning algorithms - A survey, IEEE Trans. Neural Netw. 4(5): 740–747.
Regier, T. (1996) The Human Semantic Potential: Spatial Language and Constrained Connectionism. MIT

Press, Cambridge, MA.
Renals, S. and Rohwer, R. (1989) Phoneme classification experiments using radial basis functions. In:

Proceedings of the International Joint Conference on Neural Networks - IJCNN, Washington, DC, June,
pp. 461–467.

Resconi, G. and Jain, L.C. (2004) Intelligent Agents, Springer, New York.
Resconi, G. and van Der Wal, A.J. (2000) A data model for the morphogenetic neuron, Int. J. Gen. Syst.

29(1): 141.

References 433

Resconi, G., Klir, G.J., and Pessa, E. (1999) Conceptual foundations of quantum mechanics the role of evidence
theory, quantum sets and modal logic. Int. J. Mod. Phys. C 10(1): 29–62.

Richardson, K. (1999) The Making of Intelligence, Phoenix, London.
RIKEN (2001) BSI News, 1–20, 2001, Japan.
Rizzi, L., Bazzana, F., Kasabov, N., Fedrizzi, M., and Erzegovesi, L. (2003). Simulation of ECB decisions and

forecast of short term Euro rate with an adaptive fuzzy expert system. Eur. J. Oper. Res. 145: 363–381.
Robins, A. (1996) Consolidation in neural networks and the sleeping brain, Connection Sci. 8(2): 259–275.
Robinson, A.J. (1989) Dynamic error propagation networks, PhD Thesis, Cambridge University.
Rolls, E.T. and Treves, A. (1998) Neural Networks and Brain Functions, Oxford University Press, Oxford.
Rosch, E. and Lloyd, B.B. (Eds.) (1978) Cognition and Categorization. Lawrence Erlbaum, Hillsdale, NJ.
Rosenblatt, F. (1962) Principles of Neurodynamics, Spartan, New York.
Rosipal, R., Koska, M., and Farkas, I. (1997) Prediction of chaotic time-series with a resource-allocating RBF

network, Neural Process. Lett. 10: 26.
Ross, A. and Jain, A.K. (2003) Information fusion in biometrics, Patt. Recogn. Lett. 24(13, September):

2115–2125.
Royer, M.H., and Yang, X.B. (1991) Application of high-resolution weather data to pest risk assessment,

OEPP/EPPO Bulletin, 21: 609–614.
Rumelhart, D.E. and McClelland, J.L. (1986) (Eds.) Parallel and Distributed Processing: Exploration in the

Microstructure of Cognition, vol. 1, MIT Press, Cambridge, MA.
Rumelhart, D.E. et al. (1986) Learning internal representation by error propagation. In: D.E Rumelhart,

J.L. McClelland, and the PDP Research Group, Parallel Distributed Processing: Explorations in the
Microstructure of Cognition. vol. 1, Foundation, MIT Press, Cambridge, MA.

Rummery, G.A. and Niranjan, M. (1994) Online Q-learning using connectionist system. Cambridge University
Engineering Department, CUED/F-INENG/TR, pp. 166.

Saad, D. (Ed.) (1999) online Learning In Neural Networks, Cambridge University Press, UK.
Salzberg, S.L. (1990) Learning with Nested Generalized Exemplars, Kluwer, Boston.
Sammon, J.W. (1968) IEEE Trans. Comp., 18(5), 401–409.
Sankar, A. and Mammone, R.J. (1993) Growing and pruning neural tree networks, IEEE Trans. Comput. 42(3):

291–299.
Santos, J. and Duro, R.J. (1994) Evolutionary generation and training of recurrent artificial neural networks.

In: Proceedings of IEEE World Congress on Computational Intelligence, vol. 2, pp. 759–763.
Schaal, S. and Atkeson, C. (1998) Constructive incremental learning from only local information. Neural

Comput. 10: 2047–2084.
Schena, M. (Ed.) (2000) Microarray Biochip Technology, Eaton, Natick, MA.
Schiffman, W., Joost, M., and Werner, R. (1993) Application of genetic algorithms to the construction of

topologies for multilayer perceptrons. In: R.F. Albrecht, C.R. Reeves, and N.C. Steele (Eds.), Artificial
Neural Nets and Genetic Algorithms, Spring-Verlag, Wien, New York.

Schneider, G. and Wrede, P. (1993) Development of artificial neural filters for pattern recognition in protein
sequences. J. Molec. Evol. 36: 586–595.

Segalowitz, S.J. (1983) Language Functions and Brain Organization, Academic Press, New York.
Segev, R. and Ben-Jacob, E. (1998) From neurons to brain: Adaptive self-wiring of neurons, TR, Faculty of

Exact Sciences, Tel-Aviv University.
Seidenberg, M. (1997) Language acquisition and use: Learning and applying probabilistic constraints, Science

275: 1599–603.
Serpen, G., Patwardhan, A., and Geib, J. (2001) Addressing the scaling problem of neural networks in static

optimization, Int. J. Neural Syst. 11(5): 477–487.
Shastri, L. (1988) A connectionist approach to knowledge representation and limited inference. Cogn. Sci. 12:

331–392.
Shastri, L. (1999) A biological grounding of recruitment learning and vicinal algorithms, TR-99–009, Interna-

tional Computer Science Institute, Berkeley.
Shavlik, J.W. and Towell, G.G. (1989) An approach to combining explanation-based and neural learning

algorithms. Connect. Sci. 1(3).
Shi, Y. and Eberhart, R.C. (1998) A modified particle swarm optimizer. In: Proceedings of the IEEE Congress

on Evolutionary Computation, pp. 69–73.
Shigematsu, Y., Okamoto, H., Ichikawa, K., and Matsumoto, G. (1999) Temporal event association and output-

dependent learning: A proposed scheme of neural molecular connections, J. Advan. Comput. Intell. 3(4):
234–244.

434 Evolving Connectionist Systems

Shipp, M. et al (2002) Difuse large B-cell lynphoma outcome prediction by gene expression profiling and
supervised machine learning, Nat. Med., 8, 68–74.

Shor, P.W. (1997) Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum
computer, SIAM J. Comput. 26: 1484–1509.

Si, J., Lin, S., and Vuong, M.A. (2000) Dynamic topology representing networks, Neural Netw. 13: 617–627.
Sinclair, S. and Watson, C. (1995) The Development of the Otago Speech Database. In: N. Kasabov, and

G. Coghill (Eds.), Proceedings of ANNES ’95, IEEE Computer Society Press, Los Alamitos, CA.
Slaney, M. (1988) Lyon’s cochlear model, Apple Computer Inc.
Smith, E.E. and Medin, D.L. (1981) Categories and Concepts, Harvard University Press, Cambridge, MA.
Snow, C. and Ferguson, C. (1977) Talking to Children: Language Input and Language Acquisition. Cambridge

University Press, Cambridge, UK.
Soltic, S., Pang, S., Kasabov, N., Worner, S., and Peacock, L. (2004) Dynamic Neuro-fuzzy Inference and

Statistical Models for Risk Analysis of Pest Insect Establishment, LNCS 3316, Springer, New York,
pp. 971–976.

Somogyi, R., Fuhrman, S., and Wen, X. (2001) Genetic network inference in computational models and
applications to large-scale gene expression data. In: J.M. Bower and H. Bolouri (Eds.), Computational
Modelling of Genetic and Biochemical Networks, MIT Press, Cambridge, MA, pp. 120–157.

Song, Q. and Kasabov, N. (2004) TWRBF – Transductive RBF Neural Network with Weighted Data Normal-
ization, LNCS, vol.3316, Springer Verlag, pp. 633–640.

Song, Q. and Kasabov, N. (2005) NFI: A neuro-fuzzy inference method for transductive reasoning, IEEE Trans.
Fuzzy Syst. 13(6): 799–808.

Song, Q. and Kasabov, N. (2006) TWNFI –Transductive weighted neuro-fuzzy inference system and applica-
tions for personalised modelling, Neural Netw., vol. 19, No. 10, pp. 159–596.

Song, Q., Kasabov, N., Ma, T., and Marshall, M. (2006) Integrating regression formulas and kernel functions
into locally adaptive knowledge-based neural networks: A case study on renal function evaluation, Artif.
Intell. Med. 36: 235–244.

Song, Q., Ma, T.M., and Kasabov, N. (2005) Transductive Knowledge Based Fuzzy Inference System for
Personalized Modeling. LNAI 3614, Springer, New York, pp. 528–535.

Spector, L. (2004) Automatic Quantum Computer Programming: A Genetic Programming Approach, Kluwer
Academic, Hingham, MA.

Spellman, P. et al. (1998) Comprehensive Identification of Cell Cycle-regulated Genes of the Yeast Saccha-
romyces cerevisiae by Microarray Hybridization Mol. Biol. Cell, 9: 3273–3297.

Stephens, C., Olmedo, I., Vargas, J., and Waelbroack, H. (2000) Self adaptation in evolving systems, Artif. Life
4(2): 183–201.

Stork, D. (1991) Sources of neural structure in speech and language processing, Int. J. Neural Syst. Singapore
2(3): 159–167.

Stork, D. and Hennecke, M. (Eds.) (1996) Speechreading by Humans and Machines, Springer Verlag, New York.
Strain, T.J., McDaid, L.J., Maguire, L.P., and McGinnity, T.M. (2006) A supervised STDP based training

algorithm with dynamic threshold neurons. In: Proceedings of IEEE International Joint Conference on
Neural Networks, Vancouver, July 16–21, IEEE Press, Washington, DC, pp. 6441–6446.

Sugeno, M. (1985) An introductory survey of fuzzy control, Inf. Sci.36: 59–83.
Sutherst, R.W. (1991) Predicting the survival of immigrant insect pests in new environments, Crop. Prote. 10:

331–333.
Sutton, R.S. and Barto, A.G. (1998) Reinforcement Learning (Adaptive Computation and Machine Learning).

MIT Press, Cambridge, MA.
Szu, H. and Hsu, C. (1999) Image processing by chaotic neural network fuzzy membership functions. In:

N. Kasabov and R. Kozma (Eds.) Neuro-Fuzzy Techniques for Intelligent Information Systems, Physica
Verlag, Springer Verlag, Berlin, pp. 207–225.

Takagi, H. (1990) Fusion technology of fuzzy theory and neural networks - Survey and future directions. In:
Proceedings of the First International Conference on Fuzzy Logic and Neural Networks, Iizuka, Japan,
July 20–24, pp.13–26.

Takagi, T. and Sugeno, M. (1985) Fuzzy identification of systems and its applications to modeling and control.
IEEE Trans. Syst. Man Cybern. 15: 116–132.

Tanaka, S. (1997) Topology of visual cortical maps, FORMA 12: 101–106.
Tavazoie, S., Hughes, J.D., Campbell, M.J., Cho, R.J., and Church, G.M. (1999) Systematic determination of

genetic network architecture, Nature Genet. 22: 281–285.
Taylor, J. R. and Kasabov, N. (2000) Modelling the emergence of speech and language through evolving

connectionist systems. In: N. Kasabov (Ed.) Future Directions for Intelligent Information Systems and
Information Sciences, Springer Verlag, New York, pp. 102–126.

References 435

Taylor, J.G. (1998) Neural networks for consciousness. In: S. Amari and N. Kasabov (Eds., Brain-Like
Computing and Intelligent Information Systems, Springer Verlag, New York.

Taylor, J.G. (1999) The Race for Consciousness, MIT Press, Cambridge, MA.
Taylor, J.G. (2005) The Human Mind: A Practical Guide, Welley, London.
Taylor, J.R. (1995) Linguistic Categorization: Prototypes in Linguistic Theory. 2nd Edition. Clarendon Press,

Oxford, UK.
Taylor, J.R. (1999) An Introduction to Cognitive Linguistics. Clarendon Press Oxford, UK.
Thorpe, S., Gaustrais, J. (1998) Rank order coding, in: Bauer, J. (ed) Computational Neuroscience, Plenum

Press, NY.
Tomita, M. (2001) Whole-cell simulation: A grand challenge of the 21st century, Trends Biotechnol. 19(6):

205–210.
Touretzky, D. and Hinton, J. (1988) A distributed connectionist production system, Cogn. Sci. 12: 423–466.
Touretzky, D.S. and Hinton, G.E. (1985) Symbols among the neurons: Details of a connectionist inference

architecture. In: Proc. IJCAI’85, pp. 238–243.
Towell, G., Shavlik, J., and Noordewier, M. (1990) Refinement of approximate domain theories by knowledge-

based neural networks, Proceedings of the Eighth National Conference on Artificial Intelligence AAAI’90,
Morgan Kaufmann, 861–866.

Towell, G.G. and Shavlik, J.W. (1993) Extracting refined rules from knowledge-based neural networks. Mach.
Learn. 13(1): 71–101.

Towell, G.G. and Shavlik, J.W. (1994) Knowledge based artificial neural networks, Artif. Intell. 70(4): 119–166.
Townsend, A. and Vieglais, D.A. (2001) Predicting species invasions using ecological niche modeling: new

approaches from bioinformatics attack a pressing problem, BioScience 51(5): 363–371.
Trentin, E. (2001) Hybrid hidden Markov models and neural networks for speech recognition, PhD thesis,

University of Florence and IRST-Trento, Italy.
Tresp, V., Hollatz, J., and Ahmad, S. (1993) Network structuring and training using rule-based knowledge. In:

M. Kaufmann (Ed.), Adv. Neural Inf. Process. Syst. 5.
Trugenberger, C.A. (2002) Quantum pattern recognition, Quant. Inf. Process. 1: 471–493.
Tsai, X.-Y., Huang, H.-C., and Chuang, S.-J. (2005) Quantum NN vs. NN in signal recognition. In:

ICITA’05: Proceedings of the Third International Conference on Information Technology and Applications
(ICITA’05) vol. 2, Washington, DC, IEEE Computer Society, pp. 308–312.

Tsankova, D., Georgieva, V., and Kasabov, N. (2005) Artificial Immune Networks As A Paradigm For Classi-
fication And Profiling Of Gene Expression Data, J. Comput. Theor. Nanosci. 2(4, Dec.): 543–550(8).

Tsukada, M, et al. (1996) Hippocampal LTP depends on spatial and temporal correlation of inputs. Neural
networks, 9(8), pp. 1357–1365.

Tsypkin, Y.Z. (1973) Foundation of the Theory of Learning Systems, Academic Press, New York.
Uchino, E., Yamakawa, T. (1995) System modelling by a neo-fuzzy-neuron with applications to acoustic and

chaotic systems, Int. J. Artif. Intell. Tools 4: 73–91.
Valova, I., Gueorguieva, N., and Kosugi, Y. (2004) An oscillation-driven neural network for the simulation of

an olfactory system, Neural Comput. Appl. 13: 65–79.
Van Hulle, M.M. (1998) Kernel-based equiprobabilistic topographic map formation. Neural Comput. 10(7):

1847–1871.
Van Owen, A. (1994) Activity-dependent neural network development, Network Comput. Neural Syst. 5:

401–423.
Vapnik, V. (1998) Statistical Learning Theory. John Wiley & Sons, New York.
Venayagamoorthy, G.K and Singhal, G. (2005) Quantum-inspired evolutionary algorithms and binary particle

swarm optimization for training MLP and SRN neural networks, J. Theor. Comput. Nanosci., vol. 2,
561–568

Venayagamoorthy, G.K., Wang, X., Buragohain, M., and Gupta, A. (2004) Function approximations with
multilayer perceptrons and simultaneous recurrent networks. In: Conference on Neuro-Computing and
Evolving Intelligence, Auckland, New Zealand, pp. 28–29.

Ventura, D. (1999) Implementing competitive learning in a quantum system. In: Proceedings of the Interna-
tional Joint Conference of Neural Networks, IEEE Press, Washington, DC.

Ventura D. and Martinez, T. (2000) Quantum associative memory, Inf. Sci. Inf. Comput. Sci. 124: 273–296.
Vesanto, J. (1997) Using SOM and local models in time-series prediction, Proc. Worrsh. SOM (WSOM’97)

ESpoo, Finland, pp. 209–214.
Waibel, A. et al. (1997) Multimodal interfaces for multimedia information agents, PNC. ICASSP, Muivid, IEEE

Press, pp. 1997–2004.

436 Evolving Connectionist Systems

Wang, J. and Jabri, M. (1998) A computational model of the auditory pathway to the superior colliculus. In:
S. Amari, and N. Kasabov (Eds.), Brain-Like Computing and Intelligent Information Systems, Springer,
New York.

Wang, J., Weiderhold, G., Firschien, O., and Sha, X.W. (1996) Applying wavelets in image database retrieval,
Technical Report, Stanford University, Stanford, CA.

Wang, L. and Fu, X. (2005) Data Mining with Computational Intelligence, Springer, New York.
Wang, L.X. (1994) Adaptive Fuzzy System and Control: Design and Stability Analysis. Prentice-Hall, Englewood

Cliffs, NJ.
Warren, R.M. (1982) Auditory Perception: A New Synthesis, Pergamon Press, Elmsford, NY.
Watts, M. and Kasabov, N. (1998) Genetic algorithms for the design of fuzzy neural networks. In: S. Usui and

T. Omori (Eds.) Proceedings of ICONIP’98 - The Fifth International Conference on Neural Information
Processing, Kitakyushu, Japan, 21–23 October 1998, vol. 2, IOS Press, Singapore, pp. 793–796.

Watts, M. and Kasabov, N. (1999) Neuro-genetic tools and techniques. In: N. Kasabov and R. Kozma, (Eds.)
Neuro-Fuzzy Techniques for Intelligent Information Systems, Physica Verlag Heidelberg, pp. 97–110.

Watts, M. and Kasabov, N. (2001) Dynamic optimisation of evolving connectionist systems by pseudo-
evolution strategies. In: Proceedings of the IEEE Congress of Evolutionary Computation (CEC), Seoul,
May, 2001, vol. 2, pp. 1335–1342.

Watts, M. and Kasabov, N. (2002) Evolutionary computation for the optimisation of evolving connectionist
systems. In: Proceedings of WCCI’2002 (World Congress of Computational Intelligence), Hawaii, May,
2002, IEEE Press, Washington, DC.

Watts, M.J. (2006) Nominal-scale evolving connectionist systems. In: Proceedings of the IEEE International
Joint Conference on Neural Networks, Vancouver, July 16–21, 2006, IEEE Press, Washington, DC,
pp. 4057–4061.

Wearing, H. (1998) Pest identification through image analysis on apples, AgResearch Report, New Zealand.
Weaver, D.C., Workman, C.T., and Stormo, G.D. (1999) Modeling regulatory networks with weight matrices.

In: Proceedings of the Pacific Symposium on Biocomputing - Hawaii, vol. 4, World Scientific, Singapore,
pp. 112–123.

Weigend, A. and Gershefeld, N. (1993) Time-Series Prediction: Forecasting the Future and Understanding the
Past. Addison-Wesley, Reading, MA.

Weigend, A. et al. (1990) Predicting the future: A connectionist approach, Int. J. Neural Syst. 1: 193–209.
Weng, J., McClelland, J., et al. (2001), Autonomous mental development by Rosots and animals science,

vol. 291, no.5504, pp. 599–600.
Werbos, P.J. (1990) Backpropagation through time: What it does and how to do it. Proc. IEEE 8(10): 1550–1560.
Werbos, P.J. and Pang, X. (1996) Generalized maze navigation: SRN critic solve what feedforward or Hebbian

nets cannot. In: Proceedings of World Congress on Neural Networks, San Diego, pp. 88–93.
Wermter, S. and Lehnert, W.G. (1989) A hybrid symbolic/ connectionist model for noun phrase understanding.

Connect. Sci. 1(3).
Wessels, L.F.A., vanSomeren, E.P., and Reinders, M.J.T. (2001) A comparison of genetic network models. In:

Proceedings of the Pacific Symposium on Biocomputing, vol. 6, pp. 508–519.
West, M. and Harrison, P.J. (1989) Bayesian Forecasting and Dynamic Models, Springer-Verlag, New York.
West, M., Blanchette, C., Dressman, H., et al. (2001) Predicting the clinical status of human breast cancer by

using gene expression profiles, PNAS 98(20, Sept. 25): 11462–11467.
White, J. and Kauer, J.S. (1999) Odour recognition in an artificial nose by spatio-temporal processing using

an olfactory neuronal network, Neurocomputing, 26–27: 919–924.
Whitley, D. (1995) Genetic algorithms and neural networks. In: G. Winter, J. Periaux, M. Galan, and P. Cuesta

(Eds.), Genetic Algorithms Engineering and Computer Science, Wiley, New York, pp. 191–201.
Whitley, D. and Bogart, C. (1990) The evolution of connectivity: Pruning neural networks using genetic

algorithms. In: Proceedings of the International Joint Conference on Neural Networks, No.1. pp. 17–22.
Widrow, B. (2006) Memory and learning. In: Proceedings of IJCNN, 2006, Vancouver, July, IEEE Press,

Washington, DC.
Widrow, B. and Hoff, M.E. (1960) Adaptive switching circuits, IRE WESCON Convention Rec. 4: 96–104.
Williams, C.P. and Clearwater, S.H. (1998) Explorations in Quantum Computing. Springer-Verlag, Berlin.
Wiskott, L. (2005) How does our visual system achieve shift and size invariance? In: J.L.van Hemmen and

T.J. Sejnowski (Eds.), Problems in Systems Neuroscience, Oxford University Press, Oxford, UK.
Woldrige, M. and Jennings, N. (1995) Intelligent agents: Theory and practice, Knowl. Eng. Rev. (10).
Wolfe, A. (1985) Determining Lyapunov exponents from a time series. Physica D 16: 285–317.
Wolpert, D.H. and Macready, W.G. (1997) No free lunch theorems for optimization, IEEE Trans. Evol. Comput.

1(1): 67–82.

References 437

Wolpert, L. et al. (1998) Principles of Development, Oxford University Press, Oxford, UK.
Wong, R.O.L. (1995) Use, disuse, and growth of the brain, Proc. Nat. Acad. Sci. USA 92(6): 1797–1799.
Woodford, B., Kasabov, N., and Wearing, H. (1999) Fruit image analysis using wavelets, in emerging knowledge

engineering and connectionist-based systems. In: N. Kasabov and K. Ko (Eds.), Proceedings of the
Iconip/Anziis/Annes’99 Workshop Future Directions For Intelligent Systems And Information Sciences,
Dunedin, 22–23 Nov., pp. 88–92.

Woolsey, C.M. (1982) Cortical Sensory Organization, Multiple Auditory Areas, Vol. 3, Humana Press,
Totowa, NJ.

Worner, S.P. (1988) Ecoclimatic assessment of potential establishment of exotic pests, J. Econ. Entomol. 81:
973–83.

Worner, S.P. (2002) Predicting the invasive potential of exotic insects. In: G. Halman (Ed��, Invasive Arthropods
and Agriculture: Problems and Solutions. Science, New Hampshire.

Wu, C.H. and McLarty, J.W. (2000) Neural Networks and Genome Informatics, Elsevier, The Hague.
Wu, X. (1992) Colour quantization by dynamic programming and principal analysis, ACM Trans. Graph. 11:

348–372.
Wysoski, S., Benuskova, L., and Kasabov, N. (2006) Online learning with structural adaptation in a network

of spiking neurons for visual pattern recognition. In: Proceedings of ICANN 2006, LNCS, Springer,
New York.

Xie, G. and Zhuang, Z. (2003) A quantum competitive learning algorithm, Liangzi Dianzi Xuebao/Chinese
J. Quantum Electron. (China), 20: 42–46.

Yager, R.R. and Filev, D. (1994) Generation of fuzzy rules by mountain clustering, J. Intell. Fuzzy Syst. 2:
209–219.

Yamakawa, T. and Tomoda, S. (1989) A fuzzy neuron and its application to pattern recognition. In:
J. Bezdek, Ed., Proceedings of the Third IFSA Congress, pp. 1–9.

Yamakawa, T., Kusanagi, H., Uchino, E., and Miki, T. (1993) A new effective algorithm for neo fuzzy neuron
model. In: Proceedings of Fifth IFSA World Congress, pp. 1017–1020.

Yamakawa, T., Uchino, E., Miki, T., and Kusanagi, H. (1992) A neo fuzzy neuron and its application to
system identification and prediction of the system behaviour. In: Proceedings of the Second International
Conference on Fuzzy Logic & Neural Networks, Iizuka, Japan, pp. 477–483.

Yamauchi, K. and Hayami, J. (2006) Sleep learning – An incremental learning system inspired by sleep
behavior, In: Proceedings of IEEE International Conference on Fuzzy Systems, Vancouver, July 16–21,
IEEE Press, Piscataway, NJ, pp. 6295–6302.

Yao, X. (1993) Evolutionary artificial neural networks, Int. J. Neural Syst. 4(3): 203–222.
Yao, X. (1996) Promises and challenges of evolvable hardware. In: Proceedings of the First International

Conference on Evolvable Systems – From Biology to Hardware, Tsukuba, Japan, 7–8 October.
Zacks, R. (2001) Biology in silico, MIT Technol. Rev. (March): 37.
Zadeh, L. (1965) Fuzzy sets. Inf. Contr. 8: 338–353.
Zadeh, L.A. (1988) Fuzzy logic. IEEE Comput. 21: 83–93.
Zanchettin, C. and Ludermir, T.B. (2004) Evolving fuzzy neural networks applied to odor recognition in an

artificial nose. In: Proceedings of IEEE International Joint Conference on Neural Networks, Budapest,
July 26–29, IEEE Press, Washington, DC.

Zhang, D., Ghobakhlou, A., and Kasabov, N. (2004) An adaptive model of person identification combining
speech and image information. In: International Conference on Control, Automation, Robotics and
Vision, Kumming, China.

Zhou, X. and Angelov, P. (2006) Real-time joint landmark recognition and classifier generation by an evolving
fuzzy system. In: Proceedings of the IEEE International Conference on Fuzzy Systems, Vancouver, July
16–21, IEEE Press, Washington, DC, pp. 6314–6321.

Zigmond, M.J., Bloom, F.E., Landis, S.C., Roberts, J.L., and Squire, L.R. (1999) Fundamental Neuroscience,
Academic Press, San Diego, Chapter 25.

ZISC Manual (2001) Zero Instruction Set Computer, Silicon Recognition, Inc., California.
Zurada, J. (1992) Introduction to Artificial Neural Systems, West Puse. Comp., Singapore.
Zwicker, E. (1961) Subdivision of the audible frequency range into critical bands, J. Acoust. Soc. Am. 33: 248.

Extended Glossary

Adaptation. The process of structural and functional changes of a system in order
to improve its performance in a changing environment.

Alan Turing’s test for AI. Definition for AI introduced by the British mathe-
matician and computer scientist Alan Turing. It states approximately that a
machine system is considered to possess artificial intelligence (AI) if while
communicating with a person behind a ‘bar’, the person cannot recognise
whether it is a machine or a human behind the bar.

Apparent error (training error). The error calculated on the basis of the reaction
of a neural network to the data used for its training. It is usually calculated as
a mean square error.

Approximate reasoning. A process of inferring new facts and achieving conclusions
with the use of inexact facts and uncertain rules.

ART. Adaptive resonance theory. A neural network invented and developed by
Carpenter and Grossberg.

Artificial life. A modelling paradigm that assumes that many individuals are
governed by the same or similar rules to grow, die, and communicate with each
other. Ensembles of such individuals exhibit repetitive patters of behaviour.

Artificial neural network. Biologically inspired computational model which
consists of processing elements (called neurons) and connections between
them with coefficients (weights) bound to the connections, which constitute
the neuronal structure. To the structure are also attached training and recall
algorithms.

Atom. In chemistry and physics, an atom is the smallest possible particle of a
chemical element that retains its chemical properties. Most atoms are composed
of three types of massive subatomic particles which govern their external
properties: electrons, which have a negative charge and are the least massive
of the three; protons, which have a positive charge and are about 1836 times
more massive than electrons; and neutrons, which have no charge and are
about 1838 times more massive than electrons. Protons and neutrons are both
nucleons and make up the dense, massive atomic nucleus. (Adapted from
http://en.wikipedia.org/wiki/.)

Automatic speech recognition system (ASRS). A computer system which aims at
providing enhanced access to machines via voice commands.

439

440 Evolving Connectionist Systems

Backpropagation training algorithm. An algorithm for adjusting the connection
weights in a neural network (NN) where the gradient descent rule is used for
finding the optimal connection weights wij which minimise a global error E.
A change of a weight �wij at a cycle (t + 1) is in the direction of the negative
gradient of the error E.

Bayesian probability. The following formula, which represents the conditional
probability between two events C and A, is known as the Bayes Formula
(Thomas Bayes, 18th century): p�A�C� = p�C�A��p�A�/p�C�. Using the Bayes
formula involves difficulties, mainly concerning the evaluation of the prior
probabilities p�A�� p�C�, p�C�A�. In practice (e.g. in statistical pattern recog-
nition), the latter is assumed to be of a Gaussian type. The Bayes theorem
assumes that if the condition C consists of condition elements C1� C2� � � �� Ck
they are independent (which may not be the case in some applications).

Catastrophic forgetting. Phenomenon which represents the ability of a network
to forget what it has learned from previous examples when they are no longer
presented to it but other examples are presented instead.

Cellular automata. A set of regularly connected simple finite automata. The simple
automata communicate and compute together when solving a single global
task. Cellular automata may be able to grow, to shrink, and to reproduce thus
providing a flexible environment for computation with arbitrary complexity.
They are also called ‘non-von Neumann’ models because of their difference
from the standard digital von Neumann computer organisation. (This is in spite
of the fact that von Neumann was one of the originators of the mathematical
theory of self-reproducing automata.)

Centre-of-gravity defuzzification method (COG). Method for defuzzification, e.g.
transforming a membership function B of an output fuzzy variable in a fuzzy
system into a crisp value y such that y is the geometrical centre of the area
occupied by B. The following formula is used: y = ��B�v��v/��B�v�.

Chaos. A complicated behaviour of a nonlinear dynamical system according to
some underlying rules.

Chaotic attractor. An area or points from the phase space of a chaotic process
where the process goes often through time, but without repeating the same
trajectory.

Classification problem. A generic AI problem which arises when it is necessary
to associate an object with some already existing groups, clusters, or classes of
objects.

Clustering. Based on a measured distance between instances (objects, points,
vectors) from the problem space, subareas in the problem space of closely
grouped instances can be defined. These areas are called clusters. They are
defined by their cluster centres and the membership of the data points to them.
A centre ci of a cluster Ci is defined as an instance of the mean of the distances
to which from each instance in the cluster is minimum. Let us have a set X
of p data items represented in an n-dimensional space. A clustering procedure
results in defining k disjoint subsets (clusters), such that every data item (n-
dimensional vector) belongs to only one cluster. A cluster membership function

Extended Glossary 441

Mi is defined for each of the clusters C1� C2� � � � � Ck 	 Mi 	 X->
0� 1��Mi�x� = 1,
if x ∈ Ci� 0, otherwise, where x is a data instance (vector) from X. In fuzzy
clustering one data vector may belong to several clusters to a certain degree of
membership, all of the degrees summing up to 1.

Computational Intelligence (CI). This encompasses methods for information
processing based on learning, reasoning, dealing with incomplete and uncertain
data, and their numerous applications in almost all areas of science, engineering,
and human activities. These methods include probabilistic methods, neural
networks, rule-based and fuzzy systems, evolutionary computation, and
hybrid systems. Many methods of CI are inspired by human intelligence
and aim at modelling brain data and brain functions along with other
biological data.

Conditional probabilities. The probability p�A�C� defines the probability of the
event A to occur, given that the event C has occurred. It is given by the formula:
p�A�C� = p�A∧C�/p�C�.

Connectionist production system. A connectionist system that implements
production rules of the form IF C THEN A, where C is a set of conditions and
A is a set of actions.

Control. Process of acquiring information for the current state of an object and
emitting control signals to it in order to keep the object in its possible and
desired states.

Data analysis. Data analysis aims at answering important questions about the
process under investigation. Some exemplar questions are: what are the statis-
tical parameters of the data available for the process, e.g. mean, standard
deviation, distribution. What is the nature of the process: random, chaotic,
periodic, stable, etc.? How are the available data distributed in the problem
space, e.g. clustered into groups, sparse, covering only patches of the problem
space and therefore not enough to rely on fully when solving the problem,
uniformly distributed? Are there missing data and how many? Is there a critical
obstacle which could make the process of solving the problem by using data
impossible? What other methods can be used either in addition to, or in substi-
tution for methods based on data?

Data, information, and knowledge. Data are the numbers, the characters, and the
quantities operated on by a computer. Information is the ordered, structured,
and interpreted data. Knowledge is the theoretical or practical understanding
of a subject, gained experience, or true and justified belief, the way we do
things.

Decision support system. This is an intelligent system that analyses variants and
suggests decisions, e.g. automated trading systems on the Internet; systems that
grant loans through electronic submissions; medical decision support systems
for cardiovascular event prediction.

Defuzzification. Process of calculating a single output numerical value for a fuzzy
output variable on the basis of the inferred resulting membership function for
this variable (see Centre-of-gravity defuzzification) .

442 Evolving Connectionist Systems

Destructive learning. A learning technique in neural networks that destroys the
initial neural network architecture, e.g. removes connections, for the purpose
of better learning.

Diagnosis. Process of finding faults in a system.

Discrete Fourier Transform (DFT). DFT transforms a vector X of N numbers
taken from a signal (or time-series data) from the time domain into a vector F
of N numbers in the frequency domain, i.e. finds the energy of the signal for
certain N frequencies.

Distance between data points. A way of measuring difference between data vectors.
The distance between two data points in an n-dimensional geometrical space
can be measured in several ways, e.g. Hamming, Dab = ��ai − bi�; Euclidean
distance, Eab = sqrt���ai −bi�

2/n�.

Distributed representation. A way of encoding information in a neural network
where a concept or a value for a variable is represented by a collective activation
of a group of neurons.

DNA information. Each cell of a living organism contains a significant amount of
genetic information stored in the DNA molecules that are located in the nucleus
of the cell. DNA is built of four types of small molecules called bases, and
denoted A, C, G, and T. It is expected that the complete human genome will have
been determined and it will contain about three billion bases (Human Genome
Program, USA,http://www.ornl.gov/hgmis/publicat/primer/intro.html).

Dynamic system. A system which evolves in a continuous or in a discrete time.

Elitism (in genetic algorithms (GA)). The single most fit member of each gener-
ation is copied unmodified into the next generation. The intention of this
strategy is to reduce the chance of losing the best genotypes, as may happen in
a stochastic process such as GA’s.

Evolutionary computation (evolutionary algorithms). This is a computational
paradigm that uses principles from biological evolution, such as genetic repre-
sentation, mutation, survival of the fittest, population of individuals, or gener-
ations of populations.

Evolutionary programming. Evolutionary algorithms applied to automatic
creation or optimisation of computer programs.

Evolutionary strategies. Evolutionary algorithms that represent a solution to a
problem as a single chromosome and evaluate different mutations of this
solution through a fitness function, until a satisfactory solution is found.

Evolving intelligent systems (EIS). The book covers methods that facilitate the
design of intelligent systems characterised by adaptation and incremental
evolving of knowledge. Such systems are also called evolving intelligent systems
(EIS). The methods are mainly based on neural networks, but include many
other techniques from the area of CI.

Expert system. A program which can provide expertise for solving problems
in a defined application area in the way the experts do. Expert systems are
knowledge-based systems that provide expertise, similar to that of experts in

Extended Glossary 443

a restricted application area. An expert system consists of the following main
blocks: knowledge base, database, inference engine, explanation module, user
interface, and knowledge acquisition module.

Explanation in an intelligent system. This is a desirable property for many AI
systems. It means tracing, in a contextually comprehensible way, the process of
inferring the solution, and reporting it. Explanation is easier for the AI symbolic
systems when sequential inference takes place. But it is difficult for parallel
methods of inference and especially difficult for the massive parallel ones.

Fast Fourier transformation (FFT). A nonlinear transformation applied on (mainly
speech) data to transform the signal taken within a small portion of time from
the time scale domain into a vector in the frequency scale domain. It is a fast
version of the discrete Fourier transformation.

Feedforward neural network. A neural network in which there are no connections
back from the output to the input neurons.

Finite Automaton. A computational model represented by a set X of inputs, a set Y
of outputs, a set Q of internal states, and two functions f1 and f2 	 f1 	 X ×Q->Q,
i.e. (x� q�t��->q�t + 1�; f2: X ×Q->Y , i.e. (x� q�t��->y�t + 1); where: x ∈ X� q ∈
Q� y ∈ Y� t and (t +1) represent two consecutive time moments.

Fitness. See Goodness.

Forecasting. See Prediction.

Fractals. Objects which occupy fractions of a standard (integer number for dimen-
sions) space called embedding space.

Fuzzification. Process of finding the membership degree �A�x′� to which input
value x′ for a fuzzy variable x, defined on a universe U , belongs to a fuzzy set
A defined on the same universe.

Fuzzy ARTMAP. Extension of ART1 when input nodes represent not ‘yes/no’
features, but membership degrees, to which the input data belong, for example
a set of features {sweet, fruity, smooth, sharp, sour}used to categorise different
samples of wines based on their taste.

Fuzzy clustering. A procedure of clustering data into possibly overlapping clusters,
such that each of the data examples may belong to each of the clusters to
a certain degree. The procedure aims at finding the cluster centres Vi�i =
1� 2� � � � � c� and the cluster membership functions �i which define to what degree
each of the n examples belongs to the ith cluster. The number of clusters
c is either defined a priori (supervised type of clustering), or chosen by the
clustering procedure (unsupervised type of clustering). The result of a clustering
procedure can be represented as a fuzzy relation �i�k� such that: (i) ��i�k = 1,
for each k = 1� 2� � � � � n (the total membership of an instance to all the clusters
equals 1); (ii) ��i�k > 0, for each i = 1� 2� � � � � c (there are no empty clusters).

Fuzzy control. Application of fuzzy logic to control problems. A fuzzy control
system is a fuzzy system applied to solve a control problem.

444 Evolving Connectionist Systems

Fuzzy expert system. An expert system to which methods of fuzzy logic are applied.
Fuzzy expert systems use fuzzy data, fuzzy rules, and fuzzy inference in addition
to the standard ones implemented in ordinary expert systems.

Fuzzy logic. A logic system that is based on fuzzy relations and fuzzy propositions,
the latter being defined on the basis of fuzzy sets.

Fuzzy neural network. A neural network that can be interpreted as a fuzzy system.

Fuzzy propositions. Propositions which contain fuzzy variables with their fuzzy
values. The truth value of a fuzzy proposition ‘X is A’ is given by the membership
function �A.

Fuzzy relations. Fuzzy relations link two fuzzy sets in a predefined manner. Fuzzy
relations make it possible to represent ambiguous relationships such as ‘the
grades of the third and second year classes are similar’, or ‘team A performed
slightly better than team B’, or ‘the more you eat fat, the higher the risk of heart
attack’.

Generalisation. Process of matching new, unknown input data to the problem
knowledge in order to obtain the best possible solution, or close to it.

Genetic algorithms (GA). Algorithms for solving complex combinatorial and
organisational problems with many variants, by employing analogy with
nature’s evolution. There are three general steps a genetic algorithm cycles
through: generate a population (cross-over); select the best individuals; mutate,
if necessary; repeat the same.

Goodness functions (also fitness function). A function that can be used to measure
the appropriateness of a prospective decision when solving a problem.

Hebbian learning law. Generic learning principle which states that a synapse,
connecting two neurons i and j, increases its strength wij if repeatedly the two
neurons i and j are simultaneously activated by input stimuli.

Homophones. Words with different spellings and meanings but sound the same,
for example ‘to, too, two’ or ‘hear, here’.

Hopfield network. Fully connected feedback network which is an autoassociative
memory. It is named after its inventor John Hopfield (1982).

Image filtering. A transformation of an original image through a set of opera-
tions that alter the original pixel intensities of the image by applying a two-
dimensional array of numbers, which is known as a kernel. This kernel is then
passed over the image using a mathematical process called convolution.

Independent component analysis. Given a dataset (or a signal) which is a mixture
of unknown independent components, the goal is to separate these components.

Inference in an AI system. The process of matching current data from the domain
space to the existing knowledge and inferring new facts until a solution in the
solution space is reached.

Information. Collection of structured data. In its broad meaning it includes
knowledge as well as simple meaningful data.

Extended Glossary 445

Information entropy. Let us have a random variable X that can take N random
values x1� x2� � � �� xN . The probability of each value xi to occur is pi and the
variable X can be in exactly one of these states, therefore

∑
i=1�����N pi = 1. The

question is, ‘What is the uncertainty associated with X?’ This question only has
a precise answer if it is specified who asked the question and how much this
person knows about the variable X. It depends on both expectations and the
reality. If we associate a measure of uncertainty h�xi� to each random value xi
which means how uncertain the observer is about this value occurring, then
the total uncertainty H�X�, called entropy, measures our lack of knowledge, the
seeming disorder in the space of the variable X: H�X� =∑

i=1�����N pi . h(xi).

Information retrieval. The process of retrieving relevant information from a
database.

Information science. This is the area of science that develops methods and systems
for information and knowledge processing regardless of the domain specificity
of this information. Information science incorporates the following subject
areas: data collection and data communication (sensors and networking); infor-
mation storage and retrieval (database systems); methods for information
processing (information theory); creating computer programs and information
systems (software engineering and system development); acquiring, repre-
senting, and processing knowledge (knowledge-based systems); and creating
intelligent systems and machines (artificial intelligence).

Initialisation. The process of setting the connection weights in a neural network
to some initial values before starting the training algorithm.

Instinct for information. A speculative term introduced in Chapter 7 that expresses
human constant striving for information and knowledge, their active search for
information in any environment in which they live.

Intelligent system (IS). An information system that manifests features of intel-
ligence, such as learning, generalisation, reasoning, adaptation, or knowledge
discovery, and applies these to complex tasks such as decision making,
adaptive control, pattern recognition, speech, image and multimodal infor-
mation processing, etc.

Interaction (human–computer). Communication between a computer system and
the environment, or the user on the other hand, in order to solve a given
problem.

Ion. An ion is an atom or group of atoms with a net electric charge. A negatively
charged ion, which has more electrons in its electron shell than it has protons
in its nucleus, is known as an anion, for it is attracted to anodes; a positively
charged ion, which has fewer electrons than protons, is known as a cation as it
is attracted to cathodes (adapted from http://en.wikipedia.org/wiki/).

Knowledge. Concise presentation of previous experience, the essence of things,
the way we do things, the know-how.

Knowledge engineering. The area of science and engineering that deals with
knowledge representation in machines, knowledge elucidation, and knowledge
discovery through computation.

446 Evolving Connectionist Systems

Knowledge-based neural networks (KBNN). These are prestructured neural
networks to allow for data and knowledge manipulation, including learning
from data, rule insertion, rule extraction, adaptation, and reasoning. KBNN
have been developed either as a combination of symbolic AI systems and NN,
or as a combination of fuzzy logic systems and NN, or as other hybrid systems.
Rule insertion and rule extraction operations are typical operations for a KBNN
to accommodate existing knowledge along with data, and to produce an expla-
nation of what the system has learned.

Kohonen self-organising map (SOM). A self-organised map neural network for
unsupervised learning invented by Professor Teuvo Kohonen and developed by
him and other researchers.

Laws of inference in fuzzy logic. The way fuzzy propositions are used to make
inferences over new facts. The following are the two most used laws illustrated
on two fuzzy propositions A and B: (a) generalised modus ponens: A->B, and
A′ ∴ B′, where B′ = A′o (A ->B); (b) generalised modus tolens (law of the
contrapositive): A ->B, and B′, ∴ A′, where A′ = (A->B) o B′.

Learning. Process of obtaining new knowledge.

Learning vector quantisation algorithm (LVQ). A supervised learning algorithm,
which is an extension of the Kohonen self-organised network learning
algorithm.

Linear transformation. Transformation f�x� of a raw data vector x such that f is
a linear function of x; for example: f�x� =2x+ 1.

Linguistic variable. A variable that takes fuzzy values.

Local representation in a neural network. A way of encoding information in a
neural network in which every neuron represents one concept or one variable.

Logic systems. An abstract system that consists of four parts: an alphabet, a set of
basic symbols from which more complex sentences (constructions) are made;
syntax, a set of rules or operators for constructing sentences (expressions) or
alternatively more complex structures from the alphabet elements. These struc-
tures are syntactically correct ‘sentences’; semantics, to define the meaning of
the constructions in the logic system; and laws of inference, a set of rules or laws
for constructing semantically equivalent but syntactically different sentences.
This set of laws is also called a set of inference rules.

Logistic function. The function described by the formula: a = 1/�1 + e−u�, where
e is a constant, the base of natural logarithms (e, sometimes written as exp, is
actually the limit of the n-square of (1 + 1/n� when n approaches infinity). In
a more general form, the logistic function can be written as a = 1/�1 + e−c�u�,
where c is a constant. The reason why the logistic function has been used as a
neuronal activation function is that many algorithms for performing learning
in neural networks use the derivative of the activation function, and the logistic
function has a simple derivative; i.e.
g/
u = a �1− a�.

Machine learning. Computer methods for accumulating, changing, and updating
knowledge in a computer system.

Extended Glossary 447

Mackey–Glass chaotic time series. A benchmark time series generated from the
following delay differential equation: dx�t�/dt = �0�2×�t−D��/�1+x10�t−D��−
0�1x�t�, where D is a delay, for D >17 the functions show chaotic behaviour.

Main dogma in genetics. A hypothesis that cells perform the following cycle of
transformations: DNA ->RNA ->proteins.

Mel-scale filter bank transformations. The process of filtering a signal through a
set of frequency bands represented by triangular filter functions similar to the
functions used by the human inner ear.

Membership function. A generalised characteristic function which defines the
degree to which an object from a universe belongs to a fuzzy concept, such as
‘small’.

Memory capacity of a neural network. Maximum number m of the patterns which
can be learned properly in a network.

Methods for feature extraction. Methods used for transforming raw data from the
original space into another space, a space of features.

Modular system. A system which consists of several modules linked together for
solving a given problem.

Molecule. In general, a molecule is the smallest particle of a pure chemical
substance that still retains its composition and chemical properties. In chemistry
and molecular sciences, a molecule is a sufficiently stable, electrically neutral
entity composed of two or more atoms.

Monitoring. Process of interpretation of continuous input information, and recom-
mending intervention if appropriate.

Moving averages. A moving average of a time series is calculated by using the
formula: MAt = ��St−i�/n, for I = 1� 2� � � � � n, where n is the number of the data
points, st−i is the value of the series at a time moment (t − i�, and MAt is the
moving average of time moment t. Moving averages are often used as input
features in an information system in addition to, or in substitution for, the real
values of a time series.

Multilayer perceptron network (MLP). A neural network (NN) that consists of an
input layer, at least one intermediate or ‘hidden’ layer, and one output layer, the
neurons from each layer being fully connected (in some particular applications,
partially connected) to the neurons from the next layer.

Mutation. A random change in the value of a gene (either in a living organism or
in an evolutionary algorithm).

Neural networks (NN). SeeArtificial neural networks.

Noise. A small random ingredient that is added to the general function which
describes the underlying behaviour of a process.

Nonlinear dynamical system. A system the next state of which on the time scale
can be expressed by a nonlinear function from its previous time states.

Nonlinear transformation. Transformation f of a raw data vector x where f is a
nonlinear function of x; for example f�x� = 1/�1+ e−x�c�, where c is a constant.

448 Evolving Connectionist Systems

Normalisation. Transforming data from its original scale into another, predefined
scale, e.g. [0, 1].

Normalisation – linear. Normalisation with the use of the following formula (for
the case of a targeted scale of [0,1]): vnorm = �v −xmin� / (xmax −xmin�, where v
is a current value of the variable x; xmin is the minimum value for this variable,
and xmax is the maximum value for that variable x in the dataset.

Nyquist sampling frequency. Half of the sampling frequency of a signal; it is the
highest frequency in the signal preserved through the sampling (e.g. Sfreq.=
22,050 Hz; Nfreq = 10,025 Hz).

Optimisation. Finding optimal values for parameters of an object or a system
which minimise an objective (cost) function.

Overfitting. Phenomenon which indicates that a neural network has approximated,
or learned, a set of data examples too closely, which may contain noise in them,
so that the network cannot generalise well on new examples.

Pattern matching. The process of matching a feature vector to already existing
ones and finding the best match.

Phase space of a chaotic process. The feature space where the process is traced
over time.

Phonemes. Linguistic abstract elements which define the smallest speech patterns
that have linguistic representation in a language.

Photon. In physics, the photon is the quantum of the electromagnetic field, for
instance light. The term photon was coined by Gilbert Lewis in 1926. The photon
can be perceived as a wave or a particle, depending on how it is measured.
The photon is one of the elementary particles. Its interactions with electrons
and atomic nuclei account for a great many of the features of matter, such
as the existence and stability of atoms, molecules, and solids (adapted from
http://en.wikipedia.org/wiki/).

Planning. An important generic AI-problem which is about generating a sequence
of actions in order to achieve a given goal when a description of the current
situation is available.

Power set of a fuzzy set A. Set of all fuzzy subsets of a fuzzy set A.

Prediction. Generating information for the possible future development of a
process from data about its past and its present development.

Principal component analysis (PCA). Finding a smaller number of m components
Y = �y1� y2� � � �� ym) (aggregated variables) that can represent the goal function
F�x1� x2� � � �� xn� of n variables, n > m to a desired degree of accuracy �; i.e.
F = M�Y +�, where M is a matrix that has to be found through the PCA.

Probability automata. Probability (or stochastic) automata are finite automata the
transitions of which are defined as probabilities.

Probability theory. The theory is based on the following three axioms. Axiom 1.
O <= p�E� <= 1. The axiom defines the probability p�E� of an event E as a real
number in the closed interval [0,1]. A probability p�E� = 1 indicates a certain

Extended Glossary 449

event, and p�E� = 0 indicates an impossible event. Axiom 2. �p�Ei� = 1, E1 ∪E2 ∪
� � �∪ Ek = U , U , problem space (universum); Axiom 3. p(E1 ∨E2� = p�E1�+p�E2�,
where E1 and E2 are mutually exclusive events. This axiom indicates that if the
events E1 and E2 cannot occur simultaneously, the probability of one or the
other happening is the sum of their probabilities.

Production system. A computer system consisting of three main parts: (a) a
list of facts, considered a working memory (the facts being called ‘working
memory elements’); (b) a set of production rules, considered the production
memory; and (c) an inference engine which is a reasoning procedure, the control
mechanism.

Productions. Transformation rules which are applied for obtaining one sequence
of characters from another.

Propositional logic. A logic system that can be dated back to Aristotle (384–322
B.C.). There are three types of symbols in propositional logic: propositional
symbols (the alphabet), connective symbols, and symbols denoting the meaning
of the sentences. There are rules in propositional logic to construct syntacti-
cally correct sentences (called well-formed formulas) and rules to evaluate the
semantics of the sentences. A proposition represents a statement about the
world, for example, ‘The temperature is over 120.’ The semantic meaning of a
propositional symbol is expressed by two possible semantic symbols: true and
false. Statements or propositions can be only ‘true’ or ‘untrue’ (false), nothing
in between.

Pruning in artificial neural networks. This is a technique that is based on gradual
removing from the network the weak connections (which have weights around
0) and the neurons which are connected by them during the training procedure.

Recall process. The process of using a trained neural network when new data are
fed and results are calculated.

Recurrent fuzzy rule. A fuzzy rule which uses in its antecedent part one or more
previous time-moment values of the output fuzzy variable.

Recurrent networks. Neural networks with feedback connections from neurons in
one layer to neurons in a previous layer.

Reinforcement learning (or also reward-penalty learning) A neural network
training method that is based on presenting input vector x and looking at the
output vector calculated by the network; if it is evaluated as ‘good’, then a
‘reward’ is given to the network in the sense that the existing connection weights
get increased, otherwise the network is ‘punished’: the connection weights,
being considered ‘not appropriately set’, decrease.

Representation (in information science). A process of transforming existing
problem knowledge to some of the known knowledge engineering schemes in
order to process it in a computer program through the application of knowledge
engineering methods.

Roulette wheel selection (in genetic algorithms (GA)). A selection strategy
according to which each individual is assigned a slot in an imaginary roulette
wheel, with the size of the slot dependent upon the fitness of the individual.

450 Evolving Connectionist Systems

Therefore, the more fit the individual, the higher the chance is of being selected
to breed.

Sampling�A process of selecting a subset of the data available. Sampling can be
applied on continuous time-series data; for example speech data is sampled at
a frequency of 22 KHz say, or on static data, a subset of the dataset is taken for
processing purposes.

Sensitivity to initial conditions. A characteristic of a chaotic process which practi-
cally means that a slight difference in the initial values of some parameters that
characterise the chaotic process will result in quite different trends in its future
development.

Signal processing. Transforming a signal taken within a small portion of time into
an n−dimensional vector, where n is the number of features used.

Sources of information. There are many sources of information in the world
today. The ‘macroworld’ of information contains many different types of infor-
mation, e.g. health and medical information, business, financial and economic
information, geographic information, information about the universe, etc. The
‘microworld’ of information includes information about the human brain and
the nervous system, genetic and molecular information, and quantum infor-
mation.

Spatial-temporal artificial neural networks. Artificial neural networks that
represent patterns of activities which have some spatial distribution and appear
at certain times.

Stability/plasticity dilemma. Ability of a system to preserve the balance between
retaining previously learned patterns and learning new patterns.

Statistical analysis methods. Methods used for discovering the repetitiveness in
data based on probability estimation.

Supervised learning in ANN. A process of approximating a set of ‘labelled’ data;
i.e. each data item (which is a data point in the input–output problem space)
contains values for attributes (features), independent variables, labelled by the
desired value(s) for the dependent variables. Supervised learning can be viewed
as approximating a mapping between a domain and a solution space of a
problem: X->Y , when samples (examples) of (input vector–output vector) pairs
(x� y� are known; x ∈ X� y ∈ Y� x = �x1� x2� � � � � xn�� y = �y1� y2� � � � � ym�.

Supervised training algorithm. Training of a neural network when the training
examples comprise input vectors x and the desired output vectors y; training
is performed until the neural network ‘learns’ to associate each input vector x
to its corresponding and desired output vector y.

Test error. An error which is calculated when, after having trained a network with
a set of training data, another set (test, validation, cross-validation), for which
the results are also known, is applied for a recall procedure.

Time alignment. A process where a sequence of vectors recognised over time is
aligned to represent a meaningful linguistic unit (phoneme, word).

Time-series prediction. Prediction of time series events.

Extended Glossary 451

Tournament selection (in genetic algorithms GA). A selection strategy when
two individuals are selected using roulette wheel selection and their fitness
is compared, the individual with the highest fitness being inserted into the
breeding population.

Training error. See Apparent error.

Training of a neural network. A procedure of presenting training examples to a
neural network and changing the network’s connection weights according to a
certain learning law.

Tree. Directed graph in which one of the nodes, called a root, has no incoming
arcs, but from which each node in the tree can be reached by exactly one path.

Type-2 fuzzy inference system. A fuzzy rule-based system that uses type-2
fuzzy rules.

Type-2 fuzzy membership function. A fuzzy membership function to which
elements belong with a membership degree that is represented not by a single
number, but by an interval of min–max membership degrees

Type-2 fuzzy set. A fuzzy set to which elements belong with a membership degree
that is represented not by a single number but by an interval of min–max
membership degrees.

Universal function approximator (for NN). A theorem was proved by Hornik et al.
(1989), Cybenko (1989), and Funahashi (1989) that a MLP with one hidden
layer can approximate any continuous function to any desired accuracy, subject
to a sufficient number of hidden nodes. The theorem proves the existence of
such a MLP. As a corollary, any Boolean function of n Boolean variables can
be approximated by a MLP. An easy proof can be shown by using 2n hidden
nodes, but the optimum number for these nodes is difficult to obtain.

Unsupervised learning algorithm. A learning procedure when only input vectors
x are supplied to a neural network; the network learns some internal charac-
teristics, e.g. clusters, of the whole set of all the input vectors presented to it.

Validation. Process of testing how good the solutions produced by a system are.
The solutions are usually compared with the results obtained either by experts,
or by other systems.

Validation error. See Test error.

Vector quantisation. A process of representing an n-dimensional problem space
as an m-dimensional one, where m < n, in a way that preserves the similarity
between the data examples (points in each of these two spaces).

Vigilance. Parameter in the ART network which controls the degree of mismatch
between the new patterns and the learned (stored) patterns which the system
can tolerate.

Wavelet transformation. A nonlinear transformation that can be used to represent
slight changes of the signal within the chosen window from the time scale (for
the FFT it was assumed that the signal does not change or at least does not
change significantly within a window). Here, within the window, several trans-
formations are taken from the raw signal by applying wavelet basis functions

452 Evolving Connectionist Systems

of the form Wa�b�x� = f�ax −b�, where f is a nonlinear function, a is a scaling
parameter, and b is a shifting parameter (varies between 0 and a�. Thus, instead
of one transformation, several transformations are applied by using wavelet
basis functions Wa� 0� � � � �Wa� 1� � � � �Wa� 2� � � � �Wa� a. An example of such a set
of functions is f�x� = cos��x�, for −0�5 <= x <= 0�5, and f�x� = 0, otherwise.
Wavelet transformations preserve time variations of a signal within a certain
time interval.

Index

active learning 34
active learning mode 106, 206
adaptation 9, 267
adaptation adaptive learning 1, 26, 27, 33, 81, 84,

85, 86, 87, 113, 114, 115, 120, 121, 145, 177,
317, 329, 350, 362, 380

Adaptive Neuro-Fuzzy Inference Systems see
ANFIS

adaptive resonance theory 73–5
AI see artificial intelligence
Alan Turing’s test for AI 339, 439
amino acids 232, 262, 263, 264
analytical knowledge 33, 34
ANFIS 144–6, 158, 160, 166
apparent error (training error) 123, 439
approximate reasoning 439
artificial intelligence 7, 44, 242
artificial life 200–1
artificial neural network 331
ART see adaptive resonance theory
atom 342, 400, 401, 439
auto-correlation 128, 129
automatic speech recognition system (ASRS)

304, 325
axioms for the entropy 36

backpropagation algorithm 26, 29, 31, 84, 120,
135, 144, 146, 157, 158, 217, 219

basilar membrane 284
batch-mode off-line learning 26
bayesian probability 37
Bezdek, J. 60
bias/variance dilemma 28
bioinformatics 231–72
black box 8
BP see backpropagation algorithm

Carpenter, G. A. 27, 28, 29, 73, 75
catastrophic forgetting 8, 84
cellular automaton 185
Central Dogma of Molecular Biology 233

centre-of-gravity defuzzification method
(COG) 440

chaos 348, 440
chaotic attractor 7, 268
Chomsky, Noam 304, 305
Chomsky’s Universal Grammar 304
classification problem 21, 79, 224, 243
closed problem space 26
clustering 57–61
cochlea 275, 283, 284
cocktail party problem 362
codons 236, 262
colon cancer 250–1
colour quantisation 344–8
combined knowledge 33
combined learning 28, 62
combined on-line and off-line learning 27
computational intelligence (CI) 8
conditional probabilities 113
connectionist classification scheme 21–35
connectionist constructivism 29
connectionist learning models 24
connectionist production system 8–11
connectionist selectivism 29
connectionist systems for on-line supervised

learning 83–90
consciousness of a system 33
constrained minimization method 41
control 222, 266

data, information, and knowledge 279
data analysis 75–6, 236–42
DCS see dynamic cell structure
decision support system 168, 381
defuzzification 114, 148, 169
delta algorithm 102
DENFIS 149–61
deoxyribonucleic acid see DNA
destructive learning 442
deterministic finite-state automaton 127
development-based learning 28

453

454 Index

diagnosis 244
discrete fourier transform (DFT) 407, 409
distance between data points 82
distributed representation 442
DNA 5, 6, 38, 39, 54, 119, 231, 232, 233, 234,

235, 236, 237, 238, 243, 250, 267, 273,
273, 280

transcription 233, 236–7, 267
DNA information 5, 234, 236
dynamically changing structures 29, 64
dynamic cell structure 70
dynamic evolving neuro-fuzzy inference systems

see DENFIS
dynamic SOMs 70–1
dynamic system 9, 149–61

ECM 61–8
algorithm 62–4

ECOS 9
EC see evolutionary computation
EEG 273, 275, 278
EEG measurements 290–1
EFuNN

inference 107
EI see emerging intelligence
electroencephalography 278
elitism 181, 185
emerging intelligence 201
entropy 35, 36, 37, 75, 268
ESOM 71–2
Euclidean distance 55, 58, 62, 64, 82, 93, 100, 139,

161, 162, 195, 212, 213, 341, 375
eukaryotes 239, 241
evolution 5, 11, 12, 28, 44, 177, 178, 179, 185, 188,

190, 206, 233, 234, 241, 277, 278, 385, 398
evolutionary computation 5, 8, 28, 177–202,

269, 396
evolutionary learning 24
evolutionary neural networks 97
evolutionary processes 233
evolutionary programming 128, 178
evolutionary strategies 178, 179–83
evolving artificial life 200–1
evolving automata 128–32
evolving connectionist system 8–11
evolving fuzzy automaton 128, 131
evolving fuzzy neural networks see EFuNN
evolving intelligent systems 8–11, 325–39,

361–80, 381–9
evolving self-organizing maps see ESOM
evolving systems on the Web 208–9, 247
exons 232, 236, 239
expert system 143
explanation in an intelligent system 443

fast fourier transform (FFT)15, 329, 348
feature evaluation 15–20
feature map 68, 69, 72
feature selection 15–20
feedforward neural network 443
filterbank 284
finite automata 127–8
fitness see Goodness
fixed-size structure 28
fMRI see functional magnetic resonance

imaging
forecasting see prediction
formants 286, 326, 331
fractals 20, 30, 32
Fritzke, B. 26, 29, 70, 86, 120
functional magnetic resonance imaging 278, 293
fuzzification 170, 261
fuzzy-2 clustering 61, 119–20
fuzzy ARTMAP 29, 75
fuzzy clustering 60–1
fuzzy C-means clustering 58, 60, 261
fuzzy control 443
fuzzy expert system 444
fuzzy logic 444, 446
fuzzy neural networks 97
fuzzy propositions 150
fuzzy relations 444

gammatone function 284
GA see genetic algorithms
GCS 86
gene profiling methodology 256–9
generalisation 27, 48, 84, 93, 119, 122, 140, 160,

161, 165, 167, 210, 219, 220, 221, 224, 239,
338, 367, 371, 372

generic neuro-genetic principle 302, 322
genes 7, 9, 75, 206, 232, 233, 234, 247, 252, 259
genetic algorithms (GA) 179–81
gene translation 233
global partitioning 29–30
GNG see growing neural gas
goodness, 27, 179, 444
Grossberg, S. 4, 11, 14, 27, 29, 73, 128, 276
growing neural gas 29, 160
growing structure 70

Hamming distance 55
hearing functions 283
Hebb, Donald O 22
Hebbian learning law 5, 136, 444
homophones 335
Hopfield network 444
HyFIS 146–8

Index 455

image filtering (also fitness function) 411
incremental learning 9, 10, 26, 29, 53, 71, 89, 109,

119, 143, 186–7
independent component analysis 444
infant language acquisition 306
inference 107, 141–75, 444
inference in an AI system 444
information entropy 37, 258
information retrieval 295
information science 21, 125, 233, 236, 339
initialisation 188, 290
innateness versus learning 305–7
instinct for information 272, 302
intelligence 8, 198–200
intelligent system (IS) 8, 9, 12, 33, 34, 143, 229,

232, 275, 288, 325, 341, 381, 393
interaction (human–computer) 445
introns 232, 236, 239, 241
ion 445

Jang, R. 30, 121, 144, 158, 396

K-means algorithm 58, 70
knowledge 8, 11, 30, 33, 109–24, 141–6, 215–19,

231–73, 445
knowledge-based neural networks (KBNN) 141–6
knowledge engineering 3, 4, 53, 83, 123
knowledge representation 8, 9, 30, 31, 33, 82, 225
Kohonen, T. 24, 68, 69, 70, 71, 336
Kohonen self-organising map (SOM) 446

law of intelligence 8
laws of inference in fuzzy logic 446
learning vector quantisation algorithm (LVQ) 70,

80, 235, 336, 338, 356
least mean square 102, 144
least-square estimator 151
leave one out method 250
leukaemia 49, 244, 247, 251, 252, 253, 269, 322
lifelong learning 5, 8, 10, 27, 81, 90, 109, 118, 125,

141, 233, 303
cell structures 90

linear transformation 446
linguistic variable 446
LMS see least mean square
local fuzzy normalized distance 55
local learning 30, 93, 216, 217, 218, 219
local minima problem 120
local normalised fuzzy distance 120
local on-line generalization error 83
local partitioning 30
local representation in a neural network 446
logic systems 446
logistic function 446
LSE see least-square estimator

machine learning 446
Mackey–Glass time series 115–19
main dogma in genetics 447
Mel-scale filter bank transformations 447
membership function 113–15
memory-based knowledge 32
memory capacity of a neural network 447
messenger RNA 232, 241
methods for feature extraction 447
min cut problem 180
MLP see multilayer perceptrons
modular system 304, 332
molecule 5, 38, 185, 232, 241, 241, 263, 295, 299,

400, 401
monitoring 174, 447
moving averages 447
mRNA 232, 235, 236, 237, 238, 239, 240, 262, 297
multilayer perceptrons 29, 84, 120, 156, 237
mutation 447

natural language understanding 338
nature versus nurture 303, 305–7
NDEI see nondimensional error index
neural gas model 70
neural networks (NN) 1, 6, 30, 97–24, 128–32,

133–9, 141–6, 215–16, 281, 398–400, 447
neuro-fuzzy genetic systems 184–5
neuro-fuzzy inference systems 97, 141, 144, 149
noise 168, 260, 291, 294, 295, 308, 325, 336, 339,

342, 366, 399
nondimensional error index 39, 84, 154, 158, 165
nonlinear dynamical system 447
nonlinear transformation 443, 447, 451
normalisation 190, 191, 192, 197, 250, 251, 330
normalisation–linear 448
normalised Euclidean distance 62, 64, 68
nucleic acid backbone 232
Nyquist sampling frequency 448

off-line clustering 67, 244
online classification 171, 333
online clustering 67, 295, 346
online evolving clustering 153, 351
online image classification 358
on-line learning 26, 27, 44, 72, 141, 143, 145,

151, 153, 154, 155, 160, 171, 175, 239, 329,
333, 358

on-line pattern mode 26, 84
on-line principal component analysis 16, 24, 68,

234, 247, 351, 366
on-line prototype learning 24, 53, 54, 73–5
on-line vector quantisation 54, 68, 70, 451
open problem space 25, 51, 124, 140

456 Index

optimisation 4, 5, 19, 24, 27, 61, 62, 64, 84, 97,
104, 124, 145, 156, 162, 163, 168, 177, 178,
179, 180, 181, 183–5, 186, 188, 189, 194, 197,
198, 219, 296, 298, 358, 393, 396, 397

overfitting 448

pattern matching 348
PCA see principal component analysis
phase space of a chaotic process 440, 448
phoneme analysis 307
phonemes 204, 275, 303, 306–7
phonetics 338
photon 394, 448
planning 448
population-based learning 178, 179
power set of a fuzzy set 448
pragmatics 339
prediction 4, 7, 36, 49, 51, 71, 119, 154, 155, 158,

160, 161, 168, 170, 186, 187, 189, 191, 193,
194, 210, 219, 220, 223, 231, 232, 234, 242,
244, 254, 262, 382, 384

principal component analysis 16, 24, 68, 234,
247, 351, 366

principle of contrast 307
probability automata 488
probability theory 488
productions 449
production system 449
propositional logic 449
prosody 338
protein production 232, 233
protein structure prediction 262–5
proteomics 262
prototype nodes 69, 71, 72, 79
pruning in artificial neural networks 449

radial basis function 85–7, 92, 102, 120
RAN see resource allocation network
RBF see radial basis function
RBS see ribosome binding site
recall process 156, 160, 449
receptive field weighted regression model 87–9
rectangular receptive field 170
recurrent connectionist systems 128
recurrent fuzzy rule 449
recurrent networks 449
reference 58, 69
reference vectors 58, 69, 70
reinforcement learning 27, 127, 132–3
representation (in information science) 449
resource allocation network 87
ribonucleic acid see RNA
ribosome binding site 236, 237, 238–9
ribosomes 236, 262

RNA 5, 231, 232, 235, 236, 237, 239, 240, 241, 242,
243, 269

RNA polymerase 236, 238
Roulette wheel selection (in genetic algorithms

(GA)) 449
rule aggregation 83, 109–34
rule extraction 30, 34, 53, 83, 105, 109–10, 115,

117, 123, 143, 146, 155, 158, 175, 211, 240,
242, 292, 367

rule node aggregation 110, 355

Sammon projection 72, 79, 245
sampling 266, 366
selection 15–51, 181–2, 183, 189–91, 329–30,

341–43, 376–77
self-organizing maps 68–70
semantics 336, 339
sensitivity to initial conditions 450
signal processing 296, 299, 325
single session learning 27
sleep learning 12, 106, 107, 206, 278
SOM see self-organizing maps
sources of information 340, 348, 361, 364, 377
spatial complexity 207
spatial-temporal artificial neural networks 450
spectrogram 312, 326
speech recognition 325–40
splice junction 235, 236, 240
splice junction identification 239–41
stability/plasticity dilemma 4, 26, 73
statistical analysis methods 9, 450
statistical knowledge 32, 70, 81
statistically based specialization 364, 367
supervised learning 13, 29, 70, 83–126, 450
supervised learning in ANN 450
supervised training algorithm 450
support vector machines (SVM) 15, 30, 194, 235
syntactic ambiguity 335
syntax 336, 339

task rehearsal mechanism 12
test error 119, 156, 158, 194, 248, 450
time alignment 450
time complexity 70, 208, 402
time series modeling 154–6, 158
time-series prediction 71, 119, 120, 158, 164–6,

193, 194, 450
topology representation 71
tournament selection (in genetic algorithms GA)

181, 451
training error see apparent error (training error)
training of a neural network 450, 451
travelling Salesman Problem 179, 180
tree 44
two-spirals problem 77

Index 457

type-2 evolving connectionist systems 169, 170
type-2 fuzzy inference systems 169
type-2 fuzzy membership function 55, 95, 128,

140, 143, 144, 150, 161, 162, 168, 169, 174,
184, 216, 355

type-2 fuzzy sets 451

universal function approximator (for NN) 451
universal grammar 305
unsupervised learning algorithm 451
unsupervised learning on-line 53–7

validation 48–9
validation error see test error
vector quantisation 68
vigilance 73
vigilance factor 73

wavelet transformation 348
winner takes all 58, 69

	0nykasaPrel.pdf
	0nykasaIntro.pdf
	0nykasa01.pdf
	0nykasa02.pdf
	0nykasa03.pdf
	0nykasa04.pdf
	0nykasa05.pdf
	0nykasa06.pdf
	0nykasa07.pdf
	0nykasa08.pdf
	0nykasa09.pdf
	0nykasa10.pdf
	0nykasa11.pdf
	0nykasa12.pdf
	0nykasa13.pdf
	0nykasa14.pdf
	0nykasa15.pdf
	0nykasaApp-A.pdf
	0nykasaApp-B.pdf
	0nykasaApp-C.pdf
	0nykasaApp-D.pdf
	0nykasaRef.pdf
	0nykasaGloss.pdf
	0nykasaindex.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

